OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2438–2445

Inverse scattering of dispersive stratified structures

Johannes Skaar and Magnus W. Haakestad  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2438-2445 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (923 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the inverse-scattering problem of retrieving the structural parameters of a stratified medium consisting of dispersive materials, given knowledge of the complex reflection coefficient in a finite frequency range. It is shown that the inverse-scattering problem does not have a unique solution in general. When the dispersion is sufficiently small, such that the time-domain Fresnel reflections have durations less than the round-trip time in the layers, the solution is unique and can be found by layer peeling. Numerical examples with dispersive and lossy media are given, demonstrating the usefulness of the method for, e.g., terahertz technology.

© 2012 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(310.0310) Thin films : Thin films
(300.6495) Spectroscopy : Spectroscopy, teraherz
(100.3200) Image processing : Inverse scattering

ToC Category:
Image Processing

Original Manuscript: March 26, 2012
Revised Manuscript: July 3, 2012
Manuscript Accepted: July 9, 2012
Published: August 21, 2012

Johannes Skaar and Magnus W. Haakestad, "Inverse scattering of dispersive stratified structures," J. Opt. Soc. Am. B 29, 2438-2445 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003). [CrossRef]
  2. U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, “Terahertz reflection spectroscopy of Debye relaxation in polar liquids,” J. Opt. Soc. Am. B 26, A113–A125 (2009). [CrossRef]
  3. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, and W. R. Tribe, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86, 241116 (2005). [CrossRef]
  4. A. D. van Rheenen and M. W. Haakestad, “Detection and identification of explosives hidden under barrier materials—what are the THz-technology challenges?” Proc. SPIE 8017, 801719 (2011). [CrossRef]
  5. I. M. Gel’fand and B. M. Levitan, “On the determination of a differential equation from its spectral function,” Transl. Am. Math. Soc. 1, 253–304 (1955).
  6. A. Boutet de Monvel and V. Marchenko, “New inverse spectral problem and its application,” in Inverse and Algebraic Quantum Scattering Theory (Lake Balaton, 1996), Vol. 488 of Lecture Notes in Physics (Springer, 1997), pp. 1–12.
  7. A. M. Bruckstein, B. C. Levy, and T. Kailath, “Differential methods in inverse scattering,” SIAM J. Appl. Math. 45, 312–335 (1985). [CrossRef]
  8. A. E. Yagle and B. C. Levy, “The Schur algorithm and its applications,” Acta Appl. Math. 3, 255–284 (1985). [CrossRef]
  9. G.-H. Song and S.-Y. Shin, “Design of corrugated waveguide filters by the Gel’fand–Levitan–Marchenko inverse-scattering method,” J. Opt. Soc. Am. A 2, 1905–1915 (1985). [CrossRef]
  10. P. V. Frangos and D. L. Jaggard, “A numerical-solution to the Zakharov–Shabat inverse scattering problem,” IEEE Trans. Antennas Propag. 39, 74–79 (1991). [CrossRef]
  11. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fiber Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999). [CrossRef]
  12. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001). [CrossRef]
  13. A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron. 39, 1018–1026 (2003). [CrossRef]
  14. J. Skaar and O. H. Waagaard, “Design and characterization of finite length fiber gratings,” IEEE J. Quantum Electron. 39, 1238–1245 (2003). [CrossRef]
  15. O. H. Waagaard and J. Skaar, “Inverse scattering in multimode structures,” SIAM J. Appl. Math. 68, 311–333 (2007). [CrossRef]
  16. J. Skaar, L. Wang, and T. Erdogan, “Synthesis of thick optical thin-film filters with a layer-peeling inverse-scattering algorithm,” Appl. Opt. 40, 2183–2189 (2001). [CrossRef]
  17. H. M. Nussenzveig, Causality and Dispersion Relations(Academic, 1972), Chap. 1.
  18. P. U. Jepsen and B. M. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy,” Opt. Lett. 30, 29–31 (2005). [CrossRef]
  19. J. Skaar and R. Feced, “Reconstruction of gratings from noisy reflection data,” J. Opt. Soc. Am. A 19, 2229–2237 (2002). [CrossRef]
  20. L. Duvillaret, F. Garet, and J.-L. Coutaz, “Highly precise determination of optical constants and sample thickness in THz time-domain spectroscopy,” Appl. Opt. 38, 409–415 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited