OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2516–2523

Bragg reflection waveguides as integrated sources of entangled photon pairs

Sergei V. Zhukovsky, Lukas G. Helt, Payam Abolghasem, Dongpeng Kang, John E. Sipe, and Amr S. Helmy  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2516-2523 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002516


View Full Text Article

Enhanced HTML    Acrobat PDF (912 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We explore the potential of versatile and efficient entangled photon pair generation by spontaneous parametric downconversion in Bragg reflection waveguides. By employing a quantum treatment of modes in channel waveguides, and by accounting for group velocity dispersion in the modes, the quantum state of the generated biphotons is realistically calculated. The pair production rate is predicted to reach 4 × 10 8 pairs / s / nm / mW of pump light in a 2 mm-long structure, on par with or exceeding the performance of previously reported designs. This is attributable to an enhanced nonlinear interaction through tight mode confinement in the waveguide. Strategies for device performance optimization and phase matching wavelength tunability are outlined and numerically demonstrated. The proposed design platform is versatile and allows photon pair generation with controllable flux, bandwidth, Schmidt number, and degree of polarization entanglement. The possibility of monolithic integration with a diode laser pump offers a way to design an electrically pumped entangled photon source.

© 2012 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.7380) Optical devices : Waveguides, channeled
(190.4975) Nonlinear optics : Parametric processes
(270.5565) Quantum optics : Quantum communications

ToC Category:
Optical Devices

History
Original Manuscript: January 5, 2012
Manuscript Accepted: July 14, 2012
Published: August 28, 2012

Citation
Sergei V. Zhukovsky, Lukas G. Helt, Payam Abolghasem, Dongpeng Kang, John E. Sipe, and Amr S. Helmy, "Bragg reflection waveguides as integrated sources of entangled photon pairs," J. Opt. Soc. Am. B 29, 2516-2523 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2516


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express 15, 7479–7488 (2007). [CrossRef]
  2. G. Fujii, N. Namkata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15, 12769–12776 (2007). [CrossRef]
  3. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express 17, 6727–6740 (2009). [CrossRef]
  4. M. Lobino, G. D. Marshall, C. Xiong, A. S. Clark, D. Bonneau, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, T. Zijlstra, V. Zwiller, M. Marangoni, R. Ramponi, M. G. Thompson, B. J. Eggleton, and J. L. O’Brien, “Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide,” Appl. Phys. Lett. 99, 081110 (2011). [CrossRef]
  5. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photon. 3, 687–695 (2009). [CrossRef]
  6. M. G. Thompson, A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Integrated waveguide circuits for optical quantum computing,” IET Circuits, Devices Syst. 5, 94–102 (2011).
  7. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105, 200503 (2010). [CrossRef]
  8. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006). [CrossRef]
  9. P. Abolghasem and A. S. Helmy, “Matching layers in Bragg reflection waveguides for enhanced nonlinear interaction,” IEEE J. Quantum Electron. 45, 646–653 (2009). [CrossRef]
  10. P. Abolghasem, M. Hendrych, X. Shi, J. P. Torres, and A. S. Helmy, “Bandwidth control of paired photons generated in monolithic Bragg reflection waveguides,” Opt. Lett. 34, 2000–2002 (2009). [CrossRef]
  11. P. Abolghasem, J. Han, B. J. Bijlani, A. Arjmand, and A. S. Helmy, “Highly efficient second-harmonic generation in monolithic matching layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009). [CrossRef]
  12. J. Han, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, “Continuous-wave sum-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 34, 3656–3658 (2009). [CrossRef]
  13. J. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010). [CrossRef]
  14. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009). [CrossRef]
  15. A. De Rossi, V. Berger, M. Calligaro, G. Leo, V. Ortiz, and X. Marcadet, “Parametric fluorescence in oxidized aluminum gallium arsenide waveguides,” Appl. Phys. Lett. 79, 3758–3760 (2001). [CrossRef]
  16. Z. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous parametric down-conversion in waveguides: a backward Heisenberg picture approach,” Phys. Rev. A 77, 033808 (2008). [CrossRef]
  17. L. G. Helt, E. Y. Zhu, M. Liscidini, Li Qian, and J. E. Sipe, “Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber,” Opt. Lett. 34, 2138–2140 (2009). [CrossRef]
  18. X. Caillet, V. Berger, G. Leo, and S. Ducci, “A semiconductor source of counterpropagating twin photons: a versatile device allowing the control of the two-photon state,” J. Mod. Opt. 56, 232–239 (2009). [CrossRef]
  19. X. Caillet, A. Orieux, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Two-photon interference with a semiconductor integrated source at room temperature,” Opt. Express 18, 9967–9975 (2010). [CrossRef]
  20. A. Orieux, X. Caillet, A. Lemaître, P. Filloux, I. Favero, G. Leo, and S. Ducci, “Efficient parametric generation of counterpropagating two-photon states,” J. Opt. Soc. Am. B 28, 45–51 (2011). [CrossRef]
  21. B. R. West and A. S. Helmy, “Analysis and design equations for phase matching using Bragg reflector waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 431–442 (2006). [CrossRef]
  22. W. P. Grice and I. A. Walmsley, “Spectral information and distinguishability in type-II down-conversion with a broadband pump,” Phys. Rev. A 56, 1627–1634 (1997). [CrossRef]
  23. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001). [CrossRef]
  24. Mode Solutions, version 4.0, Lumerical Solutions, Inc. Available: http://www.lumerical.com .
  25. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum-optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65, 053817 (2002). [CrossRef]
  26. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography,” Opt. Express 12, 1353–1362(2004). [CrossRef]
  27. C. Tong, B. J. Bijlani, L. S. Zhao, S. Alali, Q. Han, and A. S. Helmy, “Mode selectivity in Bragg reflection waveguide lasers,” IEEE Photon. Technol. Lett. 23, 1025–1027 (2011). [CrossRef]
  28. S. M. Spillane, M. Fiorentino, and R. G. Beausoleil, “Spontaneous parametric down conversion in a nanophotonic waveguide,” Opt. Express 15, 8770–8780 (2007). [CrossRef]
  29. A. Hayat, P. Ginzburg, and M. Orenstein, “High-rate entanglement source via two-photon emission from semiconductor quantum wells,” Phys. Rev. B 76, 035339 (2007). [CrossRef]
  30. A. Hayat, P. Ginzburg, and M. Orenstein, “Observation of two-photon emission from semiconductors,” Nat. Photon. 2, 238–241 (2008). [CrossRef]
  31. S. Ducci, L. Lanco, V. Berger, A. De Rossi, V. Ortiz, and M. Calligaro, “Continuous-wave second-harmonic generation in modal phase matched semiconductor waveguides,” Appl. Phys. Lett. 84, 2974–2976 (2004). [CrossRef]
  32. A. De Rossi, V. Ortiz, M. Calligaro, B. Vinter, J. Nagle, S. Ducci, and V. Berger, “A third-order-mode laser diode for quantum communication,” Semicond. Sci. Technol. 19, L99–L102(2004). [CrossRef]
  33. J. Svozilík, M. Hendrych, A. S. Helmy, and J. P. Torres, “Generation of paired photons in a quantum separable state in Bragg reflection waveguides,” Opt. Express 19, 3115–3123 (2011). [CrossRef]
  34. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, “Enhanced second-harmonic generation in AlGaAs microring resonators,” Opt. Lett. 32, 826–828 (2007). [CrossRef]
  35. L. G. Helt, Z. S. Yang, M. Liscidini, and J. E. Sipe, “Spontaneous four-wave mixing in microring resonators,” Opt. Lett. 35, 3006–3008 (2010). [CrossRef]
  36. C. K. Law and J. H. Eberly, “Analysis and interpretation of high transverse entanglement in optical parametric down conversion,” Phys. Rev. Lett. 92, 127903 (2004). [CrossRef]
  37. T. S. Humble and W. P. Grice, “Effects of spectral entanglement in polarization-entanglement swapping and type-I fusion gates,” Phys. Rev. A 77, 022312 (2008). [CrossRef]
  38. K. Seng Chiang and W. Peng Wong, “Theory of zero-birefringence multiple-quantum-well optical waveguides,” IEEE J. Quantum Electron. 35, 1554–1564 (1999). [CrossRef]
  39. W. Peng Wong and K. Seng Chiang, “Design of polarization-insensitive Bragg gratings in zero-birefringence ridge waveguides,” IEEE J. Quantum Electron. 37, 1138–1145(2001). [CrossRef]
  40. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000). [CrossRef]
  41. S. Gao and C. Yang, “Two channels of entangled twin photons generated by quasi-phase-matched spontaneous parametric down-conversion in periodically poled lithium niobate crystals,” J. Opt. Soc. Am. B 25, 734–740 (2008). [CrossRef]
  42. C. Tong, B. J. Bijlani, S. Alali, and A. S. Helmy, “Characteristics of edge-emitting Bragg reflection waveguide lasers,” IEEE J. Quantum Electron. 46, 1605–1610 (2010). [CrossRef]
  43. R. Horn, P. Abolghasem, B. J. Bijlani, D. Kang, A. S. Helmy, and G. Weihs, “Monolithic source of photon pairs,” Phys. Rev. Lett. 108, 153605 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited