OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2559–2566

Nanoscale metamaterial optical waveguides with ultrahigh refractive indices

Yingran He, Sailing He, Jie Gao, and Xiaodong Yang  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2559-2566 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose deep-subwavelength optical waveguides based on metal–dielectric multilayer indefinite metamaterials with ultrahigh effective refractive indices. Waveguide modes with different mode orders are systematically analyzed with numerical simulations based on both metal–dielectric multilayer structures and the effective medium approach. The dependences of waveguide mode indices, propagation lengths, and mode areas on different mode orders, free-space wavelengths, and sizes of waveguide cross sections are studied. Furthermore, waveguide modes are also illustrated with iso-frequency contours in the wave vector space in order to investigate the mechanism of waveguide mode cutoff for high-order modes. The deep-subwavelength optical waveguide with a size smaller than λ0/50 and a mode area in the order of 104λ02 is realized, and an ultrahigh effective refractive index up to 62.0 is achieved at the telecommunication wavelength. This new type of metamaterial optical waveguide opens up opportunities for various applications in enhanced light–matter interactions.

© 2012 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optical Devices

Original Manuscript: June 4, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: August 1, 2012
Published: August 29, 2012

Yingran He, Sailing He, Jie Gao, and Xiaodong Yang, "Nanoscale metamaterial optical waveguides with ultrahigh refractive indices," J. Opt. Soc. Am. B 29, 2559-2566 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech 47, 2075–2084 (1999). [CrossRef]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  4. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef]
  5. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B 74, 075103–075105 (2006). [CrossRef]
  6. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef]
  7. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  8. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  9. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat Photon 1, 224–227 (2007). [CrossRef]
  10. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005). [CrossRef]
  11. J. Shin, J.-T. Shen, and S. Fan, “Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth,” Phys. Rev. Lett. 102, 093903 (2009). [CrossRef]
  12. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature 470, 369–373 (2011). [CrossRef]
  13. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef]
  14. Y. Liu, G. Bartal, and X. Zhang, “All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region,” Opt. Express 16, 15439–15448 (2008). [CrossRef]
  15. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008). [CrossRef]
  16. Z. Jacob, J. Y. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010). [CrossRef]
  17. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010). [CrossRef]
  18. T. Jiang, J. Zhao, and Y. Feng, “Stopping light by an air waveguide with anisotropic metamaterial cladding,” Opt. Express 17, 170–177 (2009). [CrossRef]
  19. Y. J. Huang, W. T. Lu, and S. Sridhar, “Nanowire waveguide made from extremely anisotropic metamaterials,” Phys. Rev. A 77, 063836 (2008). [CrossRef]
  20. W. T. Lu and S. Sridhar, “Slow light, open-cavity formation, and large longitudinal electric field on a slab waveguide made of indefinite permittivity metamaterials,” Phys. Rev. A 82, 013811 (2010). [CrossRef]
  21. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12, 1443–1447 (2012). [CrossRef]
  22. J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. 108, 11327–11331 (2011). [CrossRef]
  23. X. Yang, J. Yao, J. Rho, X. Yin, and X. Zhang, “Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws,” Nat. Photon. 6, 450–454 (2012). [CrossRef]
  24. A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B 73, 155108 (2006). [CrossRef]
  25. M. Yan, L. Thylén, and M. Qiu, “Layered metal-dielectric waveguide: subwavelength guidance, leveraged modulation sensitivity in mode index, and reversed mode ordering,” Opt. Express 19, 3818–3824 (2011). [CrossRef]
  26. J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: graphite,” Appl. Phys. Lett. 98, 101901 (2011). [CrossRef]
  27. G.-D. Xu, T. Pan, T.-C. Zang, and J. Sun, “Characteristics of guided waves in indefinite-medium waveguides,” Opt. Commun. 281, 2819–2825 (2008). [CrossRef]
  28. F.-Y. Meng, Q. Wu, and L.-W. Li, “Transmission characteristics of wave modes in a rectangular waveguide filled with anisotropic metamaterial,” Appl. Phys. A 94, 747–753 (2009). [CrossRef]
  29. Z. Shi, G. Piredda, A. C. Liapis, M. A. Nelson, L. Novotny, and R. W. Boyd, “Surface-plasmon polaritons on metal-dielectric nanocomposite films,” Opt. Lett. 34, 3535–3537 (2009). [CrossRef]
  30. C. H. Gan and P. Lalanne, “Well-confined surface plasmon polaritons for sensing applications in the near-infrared,” Opt. Lett. 35, 610–612 (2010). [CrossRef]
  31. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461, 629–632 (2009). [CrossRef]
  32. T. M. Babinec, J. M. HausmannBirgit, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nature Nanotechnol. 5, 195–199 (2010). [CrossRef]
  33. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef]
  34. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett. 11, 321–328 (2011). [CrossRef]
  35. S. Han, Y. Xiong, D. Genov, Z. Liu, G. Bartal, and X. Zhang, “Ray optics at a deep-subwavelength scale: a transformation optics approach,” Nano Lett. 8, 4243–4247 (2008). [CrossRef]
  36. C. A. Foss, G. L. Hornyak, J. A. Stockert, and C. R. Martin, “Template-synthesized nanoscopic gold Particles: optical spectra and the effects of particle size and shape,” J. Phys. Chem. 98, 2963–2971 (1994). [CrossRef]
  37. A. Sihvola, Electromagnetic Mixing Formulas and Applications (Institution of Electrical Engineers, 1999).
  38. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  39. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18, 5124–5134 (2010). [CrossRef]
  40. A. Chandran, E. S. Barnard, J. S. White, and M. L. Brongersma, “Metal-dielectric-metal surface plasmon-polariton resonators,” Phys. Rev. B 85, 085416 (2012). [CrossRef]
  41. J. Elser, A. A. Govyadinov, I. Avrutsky, I. Salakhutdinov, and V. A. Podolskiy, “Plasmonic nanolayer composites: coupled plasmon polaritons, effective-medium response, and subdiffraction light manipulation,” J. Nanomater. 2007, 79469 (2007). [CrossRef]
  42. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007). [CrossRef]
  43. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010). [CrossRef]
  44. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Gain-assisted hyperbolic metamaterials,” in Quantum Electronics and Laser Science Conference (QELS), OSA Technical Digest (Optical Society of America, 2012), paper QTu1G.
  45. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited