OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2567–2574

Tuning the spontaneous light emission in phoxonic cavities

Evangelos Almpanis, Nikolaos Papanikolaou, Georgios Gantzounis, and Nikolaos Stefanou  »View Author Affiliations

JOSA B, Vol. 29, Issue 9, pp. 2567-2574 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (882 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The modulation of spontaneous light emission of active centers through elastic waves in Si/SiO2 multilayer phoxonic structures that support dual photonic-phononic localized modes, in the bulk or at the surface, is studied by means of rigorous full electrodynamic and elastodynamic calculations. Our results show that strong dynamic modulation of the spontaneous emission can be achieved through an enhanced acousto-optic interaction when light and elastic energy are simultaneously localized in the same region.

© 2012 Optical Society of America

OCIS Codes
(230.1040) Optical devices : Acousto-optical devices
(230.4170) Optical devices : Multilayers
(260.3800) Physical optics : Luminescence

ToC Category:
Optical Devices

Original Manuscript: June 14, 2012
Revised Manuscript: July 17, 2012
Manuscript Accepted: July 19, 2012
Published: August 30, 2012

Evangelos Almpanis, Nikolaos Papanikolaou, Georgios Gantzounis, and Nikolaos Stefanou, "Tuning the spontaneous light emission in phoxonic cavities," J. Opt. Soc. Am. B 29, 2567-2574 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [CrossRef]
  2. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 669–681 (1991). [CrossRef]
  3. A. M. Vredenberg, N. E. J. Hunt, E. F. Schubert, D. C. Jacobson, J. M. Poate, and G. J. Zydzik, “Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity,” Phys. Rev. Lett. 71, 517–520 (1993). [CrossRef]
  4. S. R. J. Brueck, V. A. Smagley, and P. G. Eliseev, “Radiation from a dipole embedded in a multilayer slab,” Phys. Rev. E 68, 036608 (2003). [CrossRef]
  5. M. Wubs, L. G. Suttorp, and A. Lagendijk, “Spontaneous-emission rates in finite photonic crystals of plane scatterers,” Phys. Rev. E 69, 016616 (2004). [CrossRef]
  6. A. S. Sánchez and P. Halevi, “Spontaneous emission in one-dimensional photonic crystals,” Phys. Rev. E 72, 056609 (2005). [CrossRef]
  7. X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” J. Disp. Technol. 3, 110–117 (2007). [CrossRef]
  8. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73, 096501 (2010). [CrossRef]
  9. H. Schniepp and V. Sandoghdar, “Spontaneous emission of europium ions embedded in dielectric nanospheres,” Phys. Rev. Lett. 89, 257403 (2002). [CrossRef]
  10. S. J. Dewhurst, D. Granados, D. J. P. Ellis, A. J. Bennett, R. B. Patel, I. Farrer, D. Anderson, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “Slow-light-enhanced single quantum dot emission in a unidirectional photonic crystal waveguide,” Appl. Phys. Lett. 96, 031109 (2010). [CrossRef]
  11. V. S. C. Manga Rao and S. Hughes, “Single quantum dot spontaneous emission in a finite-size photonic crystal waveguide: proposal for an efficient on chip single photon gun,” Phys. Rev. Lett. 99, 193901 (2007). [CrossRef]
  12. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984). [CrossRef]
  13. C. Creatore and L. C. Andreani, “Quantum theory of spontaneous emission in multilayer dielectric structures,” Phys. Rev. A 78, 063825 (2008). [CrossRef]
  14. N. H. Liu, J. P. Xu, and S. Y. Zhu, “Non-Markovian dynamic evolution of spontaneous emission decay of a two-level atom embedded in one-dimensional photonic crystals,” Phys. Rev. B 74, 075314 (2006). [CrossRef]
  15. Y. C. Jun, R. M. Briggs, H. A. Atwater, and M. L. Brongersma, “Broadband enhancement of light emission in silicon slot waveguides,” Opt. Express 17, 7479–7490 (2009). [CrossRef]
  16. J. H. Wülbern, A. Petrov, and M. Eich, “Electro-optical modulator in a polymer infiltrated silicon slotted photonic crystal waveguide heterostructure resonator,” Opt. Express 17, 304–313 (2009). [CrossRef]
  17. M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Robert-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. de Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009). [CrossRef]
  18. D. A. Fuhrmann, S. M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons,” Nat. Photon. 5, 605–609 (2011). [CrossRef]
  19. C. Brüggemann, A. V. Akimov, A. V. Scherbakov, M. Bombeck, C. Schneider, S. Höfling, A. Forchel, D. R. Yakovlev, and M. Bayer, “Laser mode feeding by shaking quantum dots in a planar microcavity,” Nat. Photon. 6, 30–34 (2012). [CrossRef]
  20. A. V. Scherbakov, T. Berstermann, A. V. Akimov, D. R. Yakovlev, G. Beaudoin, D. Bajoni, I. Sagnes, J. Bloch, and M. Bayer, “Ultrafast control of light emission from a quantum-well semiconductor microcavity using picosecond strain pulses,” Phys. Rev. B 78, 241302(R) (2008). [CrossRef]
  21. H. Lin, C. H. Lin, W. C. Lai, Y. S. Lee, S. D. Lin, and W. H. Chang, “Stress tuning of strong and weak couplings between quantum dots and cavity modes in microdisk microcavities,” Phys. Rev. B 84, 201301 (2011). [CrossRef]
  22. S. Völk, F. J. R. Schülein, F. Knall, D. Reuter, A. D. Wieck, T. A. Truong, H. Kim, P. M. Petroff, A. Wixforth, and H. J. Krenner, “Enhanced sequential carrier capture into individual quantum dots and quantum posts controlled by surface acoustic waves,” Nano Lett. 10, 3399–3407 (2010). [CrossRef]
  23. J. B. Kinzel, D. Rudolph, M. Bichler, G. Abstreiter, J. J. Finley, G. Koblmüller, A. Wixforth, and H. J. Krenner, “Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves,” Nano Lett. 11, 1512–1517 (2011). [CrossRef]
  24. J. M. M. de Lima, R. Hey, and P. V. Santos, “Active photonic crystals based on surface acoustic waves,” Appl. Phys. Lett. 83, 2997–2999 (2003). [CrossRef]
  25. J. R. Zurita-Sánchez, P. Halevi, and J. C. Cervantes-González, “Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ(t),” Phys. Rev. A 79, 053821 (2009). [CrossRef]
  26. N. V. Budko, “Electromagnetic radiation in a time-varying background medium,” Phys. Rev. A 80, 053817 (2009). [CrossRef]
  27. J. R. Zurita-Sánchez and P. Halevi, “Resonances in the optical response of a slab with time-periodic dielectric function ϵ(t),” Phys. Rev. A 81, 053834 (2010). [CrossRef]
  28. M. Eichenfeld, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, “Optomechanical crystals,” Nature 462, 78–82 (2009). [CrossRef]
  29. J. Chan, T. P. Mayer Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011). [CrossRef]
  30. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]
  31. I. E. Psarobas, N. Papanikolaou, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity,” Phys. Rev. B 82, 174303 (2010). [CrossRef]
  32. N. Papanikolaou, I. E. Psarobas, N. Stefanou, B. Djafari-Rouhani, B. Bonello, and V. Laude, “Light modulation in phoxonic nanocavities,” Microelectron. Eng. 90, 155–158 (2012). [CrossRef]
  33. J. R. Gell, M. B. Ward, R. J. Young, R. M. Stevenson, P. Atkinson, D. Anderson, G. A. C. Jones, D. A. Ritchie, and J. Shields, “Modulation of single quantum dot energy levels by a surface-acoustic-wave,” Appl. Phys. Lett. 93, 081115 (2008). [CrossRef]
  34. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49–77 (1998). [CrossRef]
  35. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM2: A new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189–196 (2000). [CrossRef]
  36. R. Sainidou, N. Stefanou, I. E. Psarobas, and A. Modinos, “A layer-multiple-scattering method for phononic crystals and heterostructures of such,” Comput. Phys. Commun. 166, 197–240 (2005). [CrossRef]
  37. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE Press, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited