OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 9 — Sep. 1, 2012
  • pp: 2610–2616

Solitons in a homogenized two-phase, isotropic, nonlinear, particulate composite medium

Nikolaos L. Tsitsas, Akhlesh Lakhtakia, and Dimitri J. Frantzeskakis  »View Author Affiliations


JOSA B, Vol. 29, Issue 9, pp. 2610-2616 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002610


View Full Text Article

Enhanced HTML    Acrobat PDF (338 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The strong permittivity fluctuation theory was employed to determine the effective linear relative permittivity and the effective nonlinear susceptibility of a two-phase, isotropic, nonlinear, particulate composite medium. Propagation in the homogenized composite medium obeys the complex Ginzburg–Landau equation, and therefore the medium can support the propagation of chirped solitons that are either Pereira–Stenflo (PS) bright solitons or Nozaki–Bekki (NB) dark solitons, when linear loss is counterbalanced by nonlinear gain. Soliton propagation depends on the volume fraction of the component phases as well as on the correlation length of the spatial fluctuation of the dielectric properties in the composite medium.

© 2012 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.3270) Nonlinear optics : Kerr effect
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 20, 2012
Manuscript Accepted: July 30, 2012
Published: August 30, 2012

Citation
Nikolaos L. Tsitsas, Akhlesh Lakhtakia, and Dimitri J. Frantzeskakis, "Solitons in a homogenized two-phase, isotropic, nonlinear, particulate composite medium," J. Opt. Soc. Am. B 29, 2610-2616 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-9-2610


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Lakhtakia ed., Selected Papers on Linear Optical Composite Materials (SPIE, 1996).
  2. R. J. Martín-Palma and A. Lakhtakia, Nanotechnology—A Crash Course (SPIE, 2010).
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  4. A. Lakhtakia and T. G. Mackay, “Meet the metamaterials,” Opt. Photon. News 18(1), 32–39 (2007). [CrossRef]
  5. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev. 40, 2494–2507 (2011). [CrossRef]
  6. P. S. Neelakanta, Handbook of Electromagnetic Materials (CRC Press, 1995).
  7. T. G. Mackay, “Effective constitutive parameters of linear nanocomposites in the long-wavelength regime,” J. Nanophoton. 5, 051001 (2011). [CrossRef]
  8. X. C. Zheng, D. J. Bergman, P. M. Hui, and D. Stroud, “Effective-medium theory for weakly nonlinear composites,” Phys. Rev. B 38, 10970–10973 (1988). [CrossRef]
  9. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46, 1614–1629 (1992). [CrossRef]
  10. K. W. Yu, P. M. Hui, and D. Stroud, “Effective dielectric response of nonlinear composites,” Phys. Rev. B 47, 14150–14156 (1993). [CrossRef]
  11. R. W. Boyd, R. J. Gehr, G. L. Fischer, and J. E. Sipe, “Nonlinear optical properties of nanocomposite materials,” Pure Appl. Opt. 5, 505–512 (1996). [CrossRef]
  12. A. Lakhtakia and W. S. Weiglhofer, “Maxwell Garnett formalism for weakly nonlinear, bianisotropic, dilute, particulate composite media,” Int. J. Electron. 87, 1401–1408 (2000). [CrossRef]
  13. T. G. Mackay, “Geometrically derived anisotropy in cubically nonlinear dielectric composites,” J. Phys. D 36, 583–591 (2003). [CrossRef]
  14. A. C. Newell, Solitons in Mathematics and Physics (SIAM1985).
  15. Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003).
  16. N. C. Kothari and C. Flytzanis, “Light propagation in a two-component nonlinear composite medium,” Opt. Lett. 12, 492–495 (1987). [CrossRef]
  17. K. Porsezian, “Soliton propagation in semiconductor-doped glass fibres with higher-order dispersion,” Pure Appl. Opt. 5, 345–348 (1996). [CrossRef]
  18. N. Lazarides and G. P. Tsironis, “Coupled nonlinear Schrödinger field equations for electromagnetic wave propagation in nonlinear left-handed materials,” Phys. Rev. E 71, 036614 (2005). [CrossRef]
  19. P. D. Maker and R. W. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 137, 801–818 (1965).
  20. P. D. Maker and R. W. Terhune, “Erratum: study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev. A 148, 990 (1966).
  21. A. Lakhtakia, “Application of strong permittivity fluctuation theory for isotropic, cubically nonlinear, composite mediums,” Opt. Commun. 192, 145–151 (2001). [CrossRef]
  22. I. S. Aranson and L. Kramers, “The world of the complex Ginzburg–Landau equation,” Rev. Mod. Phys. 74, 99–143 (2002). [CrossRef]
  23. N. R. Pereira and L. Stenflo, “Nonlinear Schrödinger equation including growth and damping,” Phys. Fluids 20, 1733–1734 (1977). [CrossRef]
  24. K. Nozaki and N. Bekki, “Exact solutions of the generalized Ginzburg–Landau equation,” J. Phys. Soc. Jpn. 53, 1581–1582 (1984). [CrossRef]
  25. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  26. A. Hasegawa and Y. Kodama, Solitons in Optical Communications (Oxford University, 1995).
  27. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).
  28. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  29. A. Lakhtakia, “Extended Maxwell Garnett formulae for weakly nonlinear dielectric-in-dielectric composites,” Optik 103, 85–87 (1996).
  30. N. L. Tsitsas, N. Rompotis, I. Kourakis, P. G. Kevrekidis, and D. J. Frantzeskakis, “Higher-order effects and ultrashort solitons in left-handed metamaterials,” Phys. Rev. E 79, 037601(2009). [CrossRef]
  31. N. L. Tsitsas, A. Lakhtakia, and D. J. Frantzeskakis, “Vector solitons in nonlinear isotropic chiral metamaterials,” J. Phys. A 44, 435203 (2011). [CrossRef]
  32. M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, 2004).
  33. N. N. Akhmediev and A. Ankiewicz, Solitons. Nonlinear Pulses and Beams (Chapman & Hall, 1997).
  34. B. A. Malomed and H. G. Winful, “Stable solitons in two-component active systems,” Phys. Rev. E 53, 5365–5368 (1996). [CrossRef]
  35. B. A. Malomed, “Solitary pulses in linearly coupled Ginzburg–Landau equations,” Chaos 17, 037117 (2007). [CrossRef]
  36. N. Efremidis, K. Hizanidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Stabilizing the Pereira–Stenflo solitons in nonlinear optical fibers,” Phys. Scr. T84, 18–21 (2000). [CrossRef]
  37. N. Efremidis, K. Hizanidis, H. E. Nistazakis, D. J. Frantzeskakis, and B. A. Malomed, “Stabilization of dark solitons in the cubic Ginzburg–Landau equation,” Phys. Rev. E 62, 7410–7414(2000). [CrossRef]
  38. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (IoP Publishing, 1999).
  39. P. W. Baumeister, Optical Coating Technology (SPIE, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited