OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 178–187

Theoretical investigation of modulational instability in semiconductor doped dispersion decreasing fiber and its cutting edge over the existing fiber systems

K. Nithyanandan, R. Vasantha Jayakantha Raja, and K. Porsezian  »View Author Affiliations


JOSA B, Vol. 30, Issue 1, pp. 178-187 (2013)
http://dx.doi.org/10.1364/JOSAB.30.000178


View Full Text Article

Enhanced HTML    Acrobat PDF (1749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical study of modulational instability (MI) in the semiconductor doped dispersion decreasing fiber (SD-DDF) is presented. We consider the combination of saturation of nonlinear response and the dispersion decreasing fiber (DDF). The exact dispersion relation is calculated by means of linear stability analysis. Different fiber systems are considered alongside the proposed SD-DDF for insight and to offer the cutting edge of the proposed model over the others. The two extreme physical effects considered lead to an exciting outcome, where decreasing dispersion leads to broadening the spectral width and saturation, on the other hand, suppresses the MI gain and the bandwidth. A bandwidth relation between different fiber systems is presented, and the idea can open the design of a fiber structure with desired dispersion profile by a suitable manipulation of these effects. We propose that instead of using DDF whose bandwidth is limited by the manufacturing constraints, the use of SD-DDF offers better tailoring of the bandwidth profile by suitably altering the saturation parameter. Thus we emphasize that the proposed SD-DDF will be a feature prospect for wide range of applications, especially in the context of ultrashort pulse generation using MI.

© 2012 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: September 4, 2012
Revised Manuscript: November 8, 2012
Manuscript Accepted: November 18, 2012
Published: December 17, 2012

Citation
K. Nithyanandan, R. Vasantha Jayakantha Raja, and K. Porsezian, "Theoretical investigation of modulational instability in semiconductor doped dispersion decreasing fiber and its cutting edge over the existing fiber systems," J. Opt. Soc. Am. B 30, 178-187 (2013)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-30-1-178

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited