OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 1 — Jan. 1, 2013
  • pp: 57–61

Enhancing the high-order harmonic generation yield within a specified spectral window via electron wave-packet engineering

Markus C. Kohler and Karen Z. Hatsagortsyan  »View Author Affiliations

JOSA B, Vol. 30, Issue 1, pp. 57-61 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A method is proposed to engineer the continuum fraction of the electron wave packet in high-order harmonic generation (HHG) such that a quasi-monochromatic recollision with the atomic core is rendered possible even for parts of the wave packet that were launched to the continuum at different laser phases. Because of this, the HHG spectrum is shown to be enhanced in a specified controllable spectral window. The electron wave-packet engineering is achieved via driving HHG by the combined fields of weak x rays and a strong shaped pulse of infrared radiation. Our calculations based on the strong field approximation show how the enhanced spectral window can be controlled by the shaping of the driving infrared pulse. The scheme is illustrated via a semiclassical trajectory-based analysis.

© 2012 Optical Society of America

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: September 5, 2012
Revised Manuscript: October 24, 2012
Manuscript Accepted: October 26, 2012
Published: December 6, 2012

Markus C. Kohler and Karen Z. Hatsagortsyan, "Enhancing the high-order harmonic generation yield within a specified spectral window via electron wave-packet engineering," J. Opt. Soc. Am. B 30, 57-61 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993). [CrossRef]
  2. P. Agostini and L. F. D. Mauro, “The physics of attosecond light pulses,” Rep. Prog. Phys. 67, 813–855 (2004). [CrossRef]
  3. M. C. Kohler, T. Pfeiffer, K. Z. Hatsagortsyan, and C. H. Keitel, “Frontiers of atomic high-harmonic generation,” Adv. At. Mol. Opt. Phys. 61, 159–208 (2012). [CrossRef]
  4. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006). [CrossRef]
  5. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science 320, 1614–1617 (2008). [CrossRef]
  6. E. Seres, J. Seres, and C. Spielmann, “X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation,” Appl. Phys. Lett 89, 181919 (2006). [CrossRef]
  7. T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high harmonic generation in the soft and hard x-ray regions of the spectrum,” Proc. Natl. Acad. Sci. USA 106, 10516–10521 (2009). [CrossRef]
  8. M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010). [CrossRef]
  9. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Baliunas, O. Mücke, A. Pugzlys, Andrius Baltuška, B. Shim, S. Schrauth, A. Gaeta, C. Hernández-Garciá, L. Plaja, A. Becker, Agnieszka Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012). [CrossRef]
  10. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163–234 (2009). [CrossRef]
  11. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328 (1990). [CrossRef]
  12. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24, 493–495 (1999). [CrossRef]
  13. Ł. Kornaszewski, M. Kohler, U. K. Sapaev, and D. T. Reid, “Designer femtosecond pulse shaping using grating-engineered quasi-phase-matching in lithium niobate,” Opt. Lett. 33, 378–380 (2008). [CrossRef]
  14. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Shaped-pulse optimization of coherent emission of high-harmonic soft x-rays,” Nature 406, 164–166 (2000). [CrossRef]
  15. D. H. Reitze, S. Kazamias, F. Weihe, G. Mullot, D. Douillet, F. Aug, O. Albert, V. Ramanathan, J. P. Chambaret, D. Hulin, and P. Balcou, “Enhancement of high-order harmonic generation at tuned wavelengths through adaptive control,” Opt. Lett. 29, 86–88 (2004). [CrossRef]
  16. T. Pfeifer, D. Walter, C. Winterfeldt, C. Spielmann, and G. Gerber, “Controlling the spectral shape of coherent soft x-rays,” Appl. Phys. B 80, 277–280 (2005). [CrossRef]
  17. S. B. P. Radnor, L. E. Chipperfield, P. Kinsler, and G. H. C. New, “Carrier-wave steepened pulses and gradient-gated high-order harmonic generation,” Phys. Rev. A 77, 033806 (2008). [CrossRef]
  18. L. E. Chipperfield, J. S. Robinson, J. W. G. Tisch, and J. P. Marangos, “Ideal waveform to generate the maximum possible electron recollision energy for any given oscillation period,” Phys. Rev. Lett. 102, 063003 (2009). [CrossRef]
  19. L. E. Chipperfield, J. W. G. Tisch, and J. P. Marangos, “Derivation of the perfect wave for optimising the strong-field driven electron recollision energy,” J. Mod. Opt. 57, 992–998 (2010). [CrossRef]
  20. M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, “Relativistic ionization rescattering with tailored laser pulses,” Phys. Rev. A 74, 051803 (2006). [CrossRef]
  21. M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, “Fully relativistic laser-induced ionization and recollision processes,” Phys. Rev. A 75, 063413 (2007). [CrossRef]
  22. K. Ishikawa, “Photoemission and ionization of He+ under simultaneous irradiation of fundamental laser and high-order harmonic pulses,” Phys. Rev. Lett. 91, 043002 (2003). [CrossRef]
  23. E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Dramatic enhancement of high-order harmonic generation,” Phys. Rev. Lett. 99, 053904 (2007). [CrossRef]
  24. K. J. Schafer, M. B. Gaarde, A. Heinrich, J. Biegert, and U. Keller, “Strong field quantum path control using attosecond pulse trains,” Phys. Rev. Lett. 92, 023003 (2004). [CrossRef]
  25. M. B. Gaarde, K. J. Schafer, A. Heinrich, J. Biegert, and U. Keller, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A 72, 013411 (2005). [CrossRef]
  26. C. Figueira de Morisson Faria and P. Salières, “High-order harmonic generation with a strong laser field and an attosecond-pulse train: the Dirac-Delta comb and monochromatic limits,” Laser Phys. 17, 390–400 (2007). [CrossRef]
  27. C. Buth, M. C. Kohler, J. Ullrich, and C. H. Keitel, “High-order harmonic generation enhanced by XUV light,” Opt. Lett. 36, 3530–3532 (2011). [CrossRef]
  28. H. Du, H. Wang, and B. Hu, “Isolated short attosecond pulse generated using a two-color laser and a high-order pulse,” Phys. Rev. A 81, 063813 (2010). [CrossRef]
  29. D. B. Milošević, S. Hu, and W. Becker, “Quantum-mechanical model for ultrahigh-order harmonic generation in the moderately relativistic regime,” Phys. Rev. A 63, 011403 (2000). [CrossRef]
  30. D. B. Milošević, S. X. Hu, and W. Becker, “Relativistic ultrahigh-order harmonic generation,” Laser Phys. 12, 389–397 (2002).
  31. C. C. Chirilă, N. J. Kylstra, R. M. Potvliege, and C. J. Joachain, “Nondipole effects in photon emission by laser-driven ion,” Phys. Rev. A 66, 063411 (2002). [CrossRef]
  32. Q. Lin, S. Li, and W. Becker, “High-order harmonic generation in a tightly focused laser beam,” Opt. Lett. 31, 2163–2165 (2006). [CrossRef]
  33. C. C. Chirilă, C. J. Joachain, N. J. Kylstra, and R. M. Potvliege, “Interaction of superintense laser pulses with relativistic ions,” Phys. Rev. Lett. 93, 243603 (2004). [CrossRef]
  34. M. C. Kohler, M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, “Phase-matched coherent hard x-rays from relativistic high-order harmonic generation,” Europhys. Lett. 94, 14002 (2011). [CrossRef]
  35. M. Klaiber, K. Z. Hatsagortsyan, C. Müller, and C. H. Keitel, “Coherent hard x rays from attosecond pulse train-assisted harmonic generation,” Opt. Lett. 33, 411–413 (2008). [CrossRef]
  36. K. Z. Hatsagortsyan, M. Klaiber, C. Müller, M. C. Kohler, and C. H. Keitel, “Laser-driven relativistic recollisions,” J. Opt. Soc. Am. B 25, B92–B103 (2008). [CrossRef]
  37. M. C. Kohler and K. Z. Hatsagortsyan, “Macroscopic aspects of relativistic x-ray-assisted high-order-harmonic generation,” Phys. Rev. A 85, 023819 (2012). [CrossRef]
  38. M. C. Kohler, C. H. Keitel, and K. Z. Hatsagortsyan, “Attochirp-free high-order harmonic generation,” Opt. Express 19, 4411–4420 (2011). [CrossRef]
  39. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Zh. Eksp. Teor. Fiz. 47, 1945–1957 (1964); Sov. Phys. JETP 20, 1307–1319 (1965).
  40. F. H. M. Faisal, “Multiple absorption of laser photons by atoms,” J. Phys. B: At. Mol. Phys. 6, L89–L92 (1973). [CrossRef]
  41. H. R. Reiss, “Effect of an intense electromagnetic field on a weakly bound system,” Phys. Rev. A 22, 1786–1813 (1980). [CrossRef]
  42. D. B. Milošević and W. Becker, “Role of long quantum orbits in high-order harmonic generation,” Phys. Rev. A 66, 063417 (2002). [CrossRef]
  43. M. Y. Ivanov, T. Brabec, and N. Burnett, “Coulomb corrections and polarization effects in high-intensity high-harmonic emission,” Phys. Rev. A 54, 742–745 (1996). [CrossRef]
  44. Note that in the employed saddle-point approximation, the Taylor expansion of the complex phase of Eq. (1) up to the second-order term is applied. When minimizing the functional determinant, the second-order expansion term is decreasing, increasing the role of the third-order term. However, we verified numerically the validity of excluding the third-order term in the applied parameter regime.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited