OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 30, Iss. 4 — Apr. 1, 2013
  • pp: 766–775

Enhanced and directional single-photon emission in hyperbolic metamaterials

Ward D. Newman, Cristian L. Cortes, and Zubin Jacob  »View Author Affiliations

JOSA B, Vol. 30, Issue 4, pp. 766-775 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1391 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an approach to enhance and direct the spontaneous emission from isolated emitters embedded inside hyperbolic metamaterials (HMMs) into single-photon beams. The approach rests on collective plasmonic Bloch modes of HMMs, which propagate in highly directional beams called quantum resonance cones. We propose a pumping scheme using the transparency window of the HMM that occurs near the topological transition. Finally, we address the challenge of outcoupling these broadband resonance cones into vacuum using a dielectric bullseye grating. We give a detailed analysis of quenching and design the metamaterial to have a huge Purcell factor in a broad bandwidth in spite of the losses in the metal. Our work should help motivate experiments in the development of single-photon sources for broadband emitters such as nitrogen vacancy centers in diamond.

© 2013 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(240.6680) Optics at surfaces : Surface plasmons
(270.0270) Quantum optics : Quantum optics
(160.3918) Materials : Metamaterials
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: November 13, 2012
Revised Manuscript: December 27, 2012
Manuscript Accepted: January 15, 2013
Published: March 5, 2013

Ward D. Newman, Cristian L. Cortes, and Zubin Jacob, "Enhanced and directional single-photon emission in hyperbolic metamaterials," J. Opt. Soc. Am. B 30, 766-775 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2010).
  2. E. Altewischer, M. P. Van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418, 304–306 (2002). [CrossRef]
  3. A. Huck, S. Smolka, P. Lodahl, A. S. Sørensen, A. Boltasseva, J. Janousek, and U. L. Andersen, “Demonstration of quadrature-squeezed surface plasmons in a gold waveguide,” Phys. Rev. Lett. 102, 246802 (2009). [CrossRef]
  4. G. Di Martino, Y. Sonnefraud, S. Kena-Cohen, M. Tame, A. K. Azdemir, M. S. Kim, and S. A. Maier, “Quantum statistics of surface plasmon polaritons in metallic stripe waveguides,” Nano Lett. 12, 2504–2508 (2012). [CrossRef]
  5. Z. Jacob and V. M. Shalaev, “Plasmonics goes quantum,” Science 334, 463–464 (2011). [CrossRef]
  6. Z. Jacob, “Quantum plasmonics,” MRS Bull. 37, 761–767 (2012). [CrossRef]
  7. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog, Phys. 68, 1129 (2005). [CrossRef]
  8. P. Grangier, B. Sanders, and J. Vuckovic, eds, “Special issue on Focus on Single Photons on Demand,” New J. Phys. 6, E04 (2004). [CrossRef]
  9. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 26802 (2010). [CrossRef]
  10. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Grard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009). [CrossRef]
  11. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Gtzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics 5, 166–169 (2011). [CrossRef]
  12. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vučković, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010). [CrossRef]
  13. I. Aharonovich, A. D. Greentree, and S. Prawer, “Diamond photonics,” Nat. Photonics 5, 397–405 (2011). [CrossRef]
  14. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5, 195–199 (2010). [CrossRef]
  15. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanced single-photon emission from a diamond-silver aperture,” Nat. Photonics 5, 738–743 (2011). [CrossRef]
  16. A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, “Controlled coupling of a single nitrogen-vacancy center to a silver nanowire,” Phys. Rev. Lett. 106, 96801 (2011). [CrossRef]
  17. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010). [CrossRef]
  18. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984). [CrossRef]
  19. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007). [CrossRef]
  20. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007). [CrossRef]
  21. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867–871 (2009). [CrossRef]
  22. J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Appl. Phys. Lett. 90, 191109 (2007). [CrossRef]
  23. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244 (2004). [CrossRef]
  24. R. K. Fisher and R. W. Gould, “Resonance cones in the field pattern of a short antenna in an anisotropic plasma,” Phys. Rev. Lett. 22, 1093–1095 (1969). [CrossRef]
  25. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE, 1994).
  26. K. G. Balmain, A. A. E. Luttgen, and P. C. Kremer, “Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial,” IEEE Antennas Wirel. Propag. Letters 1, 146–149 (2002). [CrossRef]
  27. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100, 181105 (2012). [CrossRef]
  28. M. A. Noginov, H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett. 35, 1863–1865 (2010). [CrossRef]
  29. Z. Jacob, J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, “Engineering photonic density of states using metamaterials,” Appl. Phys. B 100, 215–218 (2010). [CrossRef]
  30. I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. S. Kivshar, “Spontaneous emission enhancement in metal–dielectric metamaterials,” Phys. Lett. A 376, 185–187 (2012).
  31. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University, 2006).
  32. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials.,” J. Opt. 14, 063001 (2012). [CrossRef]
  33. K. J. Russell, T. L. Liu, S. Cui, and E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6, 459–462 (2012). [CrossRef]
  34. Y. C. Jun, R. Pala, and M. L. Brongersma, “Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits,” J. Phys. Chem. C 114, 7269–7273 (2010). [CrossRef]
  35. P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B 80, 195106 (2009). [CrossRef]
  36. A. F. Koenderink, “Plasmon nanoparticle array waveguides for single photon and single plasmon sources,” Nano Lett. 9, 4228–4233 (2009). [CrossRef]
  37. D. E. Chang, A. S. Srensen, P. R. Hemmer, and M. D. Lukin, “Quantum optics with surface plasmons,” Phys. Rev. Lett. 97, 53002 (2006). [CrossRef]
  38. Q. Quan, I. Bulu, and M. Lončar, “Broadband waveguide QED system on a chip,” Phys. Rev. A 80, 011810 (2009). [CrossRef]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  40. X. Ni, Z. Liu, and A. V. Kildishev, Nanohub PhotonicsDB (Optical Constants, 2010).
  41. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012). [CrossRef]
  42. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef]
  43. N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108, 226803 (2012). [CrossRef]
  44. J. S. Bouillard, S. Vilain, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Broadband and broadangle SPP antennas based on plasmonic crystals with linear chirp,” Nat. Sci. Rep. 2, 829 (2012). [CrossRef]
  45. Q. Gan and F. J. Bartoli, “Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping,” Appl. Phys. Lett. 98, 251103 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited