OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 18, Iss. S4 — Nov. 8, 2010
  • pp: A575–A583

Enhanced photoluminescence from mixed-valence Eu-doped nanocrystalline silicate glass ceramics

Guojun Gao, Ning Da, Sindy Reibstein, and Lothar Wondraczek  »View Author Affiliations

Optics Express, Vol. 18, Issue S4, pp. A575-A583 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1435 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Intense photoluminescence was observed from mixed-valence Eu-doped nanocrystalline BaAl2Si2O8/LaBO3 glass ceramics. For preparation in air, the ratio between Eu3+ and Eu2+ luminescence depends on synthesis temperature. XRD, TEM and IR absorption spectra were employed to characterize the crystallization process and structural properties of the precursor glass and corresponding glass ceramics. When annealed at 950 °C, the material exhibited photoluminescence more than ten times stronger than was found in its glassy state. Spectroscopic data indicate that during such a heat treatment, even in air, a significant part of the Eu3+ ions is reduced to Eu2+. Lifetime of the 5D0 state of Eu3+ increases with increasing heat treatment temperature. Eu3+ species are largely incorporated on La3+ sites in LaBO3 crystallites whereas Eu2+ locates on Ba2+ sites in the hexacelsian phase. A mechanism for the internal reduction of Eu3+ to Eu2+ is proposed. Spectroscopic properties of the material suggest application in additive luminescent light generation.

© 2010 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.4480) Lasers and laser optics : Optical amplifiers
(160.2540) Materials : Fluorescent and luminescent materials
(160.4670) Materials : Optical materials

ToC Category:
Fluorescent Luminescent Materials

Original Manuscript: August 11, 2010
Revised Manuscript: October 6, 2010
Manuscript Accepted: October 8, 2010
Published: October 15, 2010

Guojun Gao, Ning Da, Sindy Reibstein, and Lothar Wondraczek, "Enhanced photoluminescence from 
mixed-valence Eu-doped nanocrystalline 
silicate glass ceramics," Opt. Express 18, A575-A583 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Ronda, ed., Luminescence: From Theory to Applications (Wiley-VCH, 2008).
  2. K. K. Mahato, S. B. Rai, and A. Rai, “Optical studies of Eu3+ doped oxyfuloroborate glass,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 60(4), 979–985 (2004). [CrossRef] [PubMed]
  3. S. S. Babu, K. Jang, E. J. Cho, H. Lee, and C. K. Jayasankar, “Thermal, structural and optical properties of Eu3+-doped zinc-tellurite glasses,” J. Phys. D Appl. Phys. 40(18), 5767–5774 (2007). [CrossRef]
  4. S. Balaji, P. A. Azeem, and R. R. Reddy, “Absorption and emission properties of Eu3+ ions in Sodium fluoroborate glasses,” Physica B 394(1), 62–68 (2007). [CrossRef]
  5. W. Höland, and G. H. Beall, Glass ceramic technology (American Ceramic Society, 2002).
  6. M. Peng, B. Sprenger, M. A. Schmidt, H. G. Schwefel, and L. Wondraczek, “Broadband NIR photoluminescence from bismuth-doped Ba2P2O7 crystals: Insights into the nature of NIR-emitting Bismuth centers,” Opt. Express 18(12), 12852–12863 (2010). [CrossRef] [PubMed]
  7. N. Da, M. Peng, S. Krolikowski, and L. Wondraczek, “Intense red photoluminescence from Mn2+-doped (Na+, Zn2+) sulfophosphate glasses and glass ceramics as LED converters,” Opt. Express 18(3), 2549–2557 (2010). [CrossRef] [PubMed]
  8. S. Schweizer, L. Hobbs, M. Secu, J. Spaeth, A. Edgar, G. V. M. Williams, and J. Hamlin, “Photostimulated luminescence from fluorochlorozirconate glass ceramics and the effect of crystallite size,” J. Appl. Phys. 97(8), 083522 (2005). [CrossRef]
  9. K. Driesen, V. K. Tikhomirov, and C. Görller-Walrand, “Eu3+ as a probe for rare-earth dopant site structure in nano-glass-ceramics,” J. Appl. Phys. 102(2), 024312 (2007). [CrossRef]
  10. B. Zhu, S. Zhang, S. Zhou, N. Jiang, and J. Qiu, “Enhanced upconversion and luminescence of transparent Eu3+-doped glass-ceramics containing nonlinear optical microcrystals,” Opt. Lett. 32(6), 653–655 (2007). [CrossRef] [PubMed]
  11. Q. Luo, X. Fan, X. Qiao, H. Yang, M. Wang, and X. Zhang, “Eu2+-Doped Glass Ceramics Containing BaF2 Nanocrystals as a Potential Blue Phosphor for UV-LED,” J. Am. Ceram. Soc. 92(4), 942–944 (2009). [CrossRef]
  12. M. Nogami, T. Kawaguchi, and A. Yasumori, “Spectral hole burning of Eu3+-doped Al2O3-SiO2 glass prepared by melt quenching,” Opt. Commun. 193(1-6), 237–244 (2001). [CrossRef]
  13. C. Wang, M. Peng, N. Jiang, X. Jiang, C. Zhao, and J. Qiu, “Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions,” Mater. Lett. 61(17), 3608–3611 (2007). [CrossRef]
  14. Q. Zhang, Y. Qiao, B. Qian, G. Dong, J. Ruan, X. Liu, Q. Zhou, Q. Chen, J. Qiu, and D. Chen, “Luminescence properties of the Eu-doped porous glass and spontaneous reduction of Eu3+ to Eu2+,” J. Lumin. 129(11), 1393–1397 (2009). [CrossRef]
  15. C. Zhang, J. Yang, C. Lin, C. Li, and J. Lin, “Reduction of Eu3+ to Eu2+ in MAl2Si2O8 (M=Ca, Sr, Ba) in air condition,” J. Solid State Chem. 182(7), 1673–1678 (2009). [CrossRef]
  16. M. Peng, Z. Pei, G. Hong, and Q. Su, “The reduction of Eu3+ to Eu2+ in BaMgSiO4:Eu prepared in air and the luminescence of BaMgSiO4 phosphor,” J. Mater. Chem. 13(5), 1202–1205 (2003). [CrossRef]
  17. M. Peng and G. Hong, “Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescence properties of BaAl2O4:Eu,” J. Lumin. 127(2), 735–740 (2007). [CrossRef]
  18. M. P. Saradhi and U. V. Varadaraju, “Photoluminescence studies on Eu2+-Activated Li2SrSiO4-a Potential Orange-Yellow Phorsphor for Solid-State Lighting,” Chem. Mater. 18(22), 5267–5272 (2006). [CrossRef]
  19. A. Kremenović, P. Norby, R. Dimitrijević, and V. Dondur, “Time-temperature resolved synchrotron XRPD study of the hexacelsian α→β polymorph inversion,” Solid State Ion. 101–103(1-2), 611–618 (1997).
  20. R. Böhlhoff, H. U. Bambauer, and W. Hoffmann, “Hochtemperatur-Lanthanborat,” Naturwissenschaften 57(3), 129 (1970). [CrossRef]
  21. n.n., Natl. Buro Standards US monograph No. 25 (1), p. 20 (1962).
  22. K. El-Egili, “Infrared studies of Na2O–B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses,” Physica B 325, 340–348 (2003). [CrossRef]
  23. L. Stoch and M. Sroda, “Infrared spectroscopy in the investigation of oxide glasses structure,” J. Mol. Struct. 511–512(1-3), 77–84 (1999). [CrossRef]
  24. M. Arora, S. Baccaro, G. Sharma, D. Singh, K. S. Thind, and D. P. Singh, “Radiation effects on PbO-Al2O3-B2O3-SiO2 glasses by FTIR spectroscopy,” Nucl. Instrum. Methods Phys. Res. B 267(5), 817–820 (2009). [CrossRef]
  25. F. Wang, A. Stamboulis, D. Holland, S. Matsuya, and A. Takeuchi, “Solid state MAS-NMR and FTIR study of barium containing alumino-silicate glasses,” Key Eng. Mater. 361–363, 825–828 (2008). [CrossRef]
  26. P. Pernice, S. Esposito, A. Aronne, and V. N. Sigaev, “Structure and crystallization behavior of glasses in the BaO-B2O3-Al2O3 system,” J. Non-Cryst. Solids 258(1-3), 1–10 (1999). [CrossRef]
  27. Y. Chen, H. Xiao, S. Chen, and B. Tang, “Structure and crystallization of B2O3–Al2O3–SiO2 glasses,” Physica B 404(8-11), 1230–1234 (2009). [CrossRef]
  28. H. Giesber, J. Ballato, G. Chumanov, J. Kolis, and M. Dejneka, “Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3,” J. Appl. Phys. 93(11), 8987–8994 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited