OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 20, Iss. 2 — Jan. 15, 1995
  • pp: 228–230

Characteristics of crystallographic gratings

J. Sarathy, D. C. Diaz, O. L. Hartin, and J. C. Campbell  »View Author Affiliations

Optics Letters, Vol. 20, Issue 2, pp. 228-230 (1995)

View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the observation and characterization of a resonance effect in gratings fabricated on GaAs substrates by use of a crystallographically preferential wet chemical etch that terminates at the (111) family of planes. Also, we demonstrate an in situ etch-monitoring study of the diffraction characteristics of these gratings. The light intensity in the first order of diffraction was monitored in Littrow reflection during etching at 632.8-and 543.5-mm wavelengths. Scanning-electron microscopy was performed on several samples to correlate the etch depth with diffraction efficiency. The variation of diffraction intensity with depth showed a narrow peak at a shallower grating depth and a broader peak at a larger grating depth. These diffraction characteristics are explained on the basis of a competitive interaction between the resonance effect of the incident optical mode and the magnitude of the first Fourier component of the grating profile that primarily couples the incident and diffracted optical modes.

© 1995 Optical Society of America

Original Manuscript: September 12, 1994
Published: January 15, 1995

J. Sarathy, D. C. Diaz, O. L. Hartin, and J. C. Campbell, "Characteristics of crystallographic gratings," Opt. Lett. 20, 228-230 (1995)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. C. Alferness, L. L. Buhl, U. Koren, B. I. Miller, M. Young, T. L. Koch, Appl. Phys. Lett. 59, 2573 (1991). [CrossRef]
  2. T. L. Koch, U. Koren, R. P. Gnall, C. A. Burrus, B. I. Miller, Electron Lett. 24, 1431 (1988). [CrossRef]
  3. S. H. Macomber, J. S. Mott, R. J. Noll, G. M. Gallatin, E. J. Gratrix, S. L. O’Dwyer, S. A. Lambert, Appl. Phys. Lett. 51, 472 (1987). [CrossRef]
  4. J. Sarathy, R. A. Mayer, K. Jung, S. Unnikrishan, D.-L. Kwong, J. C. Campbell, Opt. Lett. 19, 798 (1994). [CrossRef] [PubMed]
  5. W.-T. Tsang, S. Wang, J. Appl. Phys. 46, 2163 (1975). [CrossRef]
  6. H.-W. Yen, Ph.D. dissertation (California Institute of Technology, Pasadena, Calif., 1976).
  7. T. K. Gaylord, M. G. Moharam, Proc. IEEE 73, 894 (1985). [CrossRef]
  8. W. Streifer, D. R. Scifres, R. D. Burnham, IEEE J. Quantum Electron. QE-12, 422 (1976). [CrossRef]
  9. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited