OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 5 — Mar. 1, 2012
  • pp: 839–841

Image-like illumination with LED arrays: design

Ivan Moreno  »View Author Affiliations

Optics Letters, Vol. 37, Issue 5, pp. 839-841 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An array of spatially distributed light-emitting diodes (LEDs) can produce an illumination pattern that approaches an image by individually modulating each LED. In this letter, I analyze the first-order design of such systems in order to achieve the best match between the illumination distribution and a desired image. In particular, simple formulas are given for the optimal number of LEDs, working distance, array size, and LED beam pattern. The analysis developed here may be applied to the design of LED systems such as architecture lighting, energy-efficient lighting, backlight local dimming for displays, and structured illumination microscopy with micro-LED arrays.

© 2012 Optical Society of America

OCIS Codes
(120.5630) Instrumentation, measurement, and metrology : Radiometry
(150.2950) Machine vision : Illumination
(230.3670) Optical devices : Light-emitting diodes
(330.5000) Vision, color, and visual optics : Vision - patterns and recognition
(220.2945) Optical design and fabrication : Illumination design

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: September 7, 2011
Revised Manuscript: December 13, 2011
Manuscript Accepted: December 13, 2011
Published: February 22, 2012

Ivan Moreno, "Image-like illumination with LED arrays: design," Opt. Lett. 37, 839-841 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. F. Schubert and J. K. Kim, Science 308, 1274 (2005). [CrossRef]
  2. D. Caicedo, A. Pandharipande, and G. Leus, Lighting Res. Technol. 43, 217 (2011). [CrossRef]
  3. A. Pandharipande and D. Caicedo, Energy Build. 43, 944 (2011). [CrossRef]
  4. D. Cho, W. S. Oh, and G. W. Moon, J. Disp. Technol. 7, 29 (2011). [CrossRef]
  5. F. Li, X. Feng, I. Sezan, and S. Daly, J. Soc. Inf. Display 15, 989 (2007). [CrossRef]
  6. N. Grossman, V. Poher, M. S. Grubb, G. T. Kennedy, K. Nikolic, B. McGovern, R. B. Palmini, Z. Gong, E. M. Drakakis, M. A. A. Neil, M. D. Dawson, J. Burrone, and P. Degenaar, J. Neural Eng. 7, 016004 (2010). [CrossRef]
  7. I. Moreno, Proc. SPIE 7058, 705811 (2008). [CrossRef]
  8. In this letter, the rms difference is a convenient similarity index because of its generality, thus allowing the reported equations to be applied to a wide variety of illumination systems. Indeed, the Δrms could be the best index for applications like structured illumination microscopy, lithography, and energy-efficient illumination.
  9. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, Appl. Opt. 45, 2265 (2006). [CrossRef]
  10. I. Moreno and C. C. Sun, Opt. Express 16, 1808 (2008). [CrossRef]
  11. K. Wang, D. Wu, Z. Qin, F. Chen, X. Luo, and S. Liu, Opt. Express 19, A830 (2011). [CrossRef]
  12. I. Moreno, Opt. Lett. 35, 4030 (2010). [CrossRef]
  13. J.-T. Dong, R.-S. Lu, Y.-Q. Shi, R.-X. Xia, Q. Li, and Y. Xu, Opt. Eng. 50, 043001 (2011). [CrossRef]
  14. R. Deepa and S. Arvind, Opt. Express 19, A639 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited