OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 37, Iss. 6 — Mar. 15, 2012
  • pp: 1050–1052

Theoretical analysis of the characteristic impedance in metal–insulator–metal plasmonic transmission lines

Hamid Nejati and Ahmad Beirami  »View Author Affiliations


Optics Letters, Vol. 37, Issue 6, pp. 1050-1052 (2012)
http://dx.doi.org/10.1364/OL.37.001050


View Full Text Article

Enhanced HTML    Acrobat PDF (294 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a closed form formulation for the impedance of the metal–insulator–metal (MIM) plasmonic transmission lines by solving the Maxwell’s equations. We provide approximations for thin and thick insulator layers sandwiched between metallic layers. In the case of very thin dielectric layer, the surface waves on both interfaces are strongly coupled resulting in an almost linear dependence of the impedance of the plasmonic transmission line on the thickness of the insulator layer. On the other hand, for very thick insulator layer, the impedance does not vary with the insulator layer thickness due to the weak-coupling/decoupling of the surface waves on each metal–insulator interface. We demonstrate the effectiveness of our proposed formulation using two test scenarios, namely, almost zero reflection in T-junction and reflection from line discontinuity in the design of Bragg reflectors, where we compare our formulation against previously published results.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 21, 2011
Manuscript Accepted: February 3, 2012
Published: March 12, 2012

Citation
Hamid Nejati and Ahmad Beirami, "Theoretical analysis of the characteristic impedance in metal–insulator–metal plasmonic transmission lines," Opt. Lett. 37, 1050-1052 (2012)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-6-1050

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited