OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 37, Iss. 6 — Mar. 15, 2012
  • pp: 1050–1052

Theoretical analysis of the characteristic impedance in metal–insulator–metal plasmonic transmission lines

Hamid Nejati and Ahmad Beirami  »View Author Affiliations

Optics Letters, Vol. 37, Issue 6, pp. 1050-1052 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (294 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a closed form formulation for the impedance of the metal–insulator–metal (MIM) plasmonic transmission lines by solving the Maxwell’s equations. We provide approximations for thin and thick insulator layers sandwiched between metallic layers. In the case of very thin dielectric layer, the surface waves on both interfaces are strongly coupled resulting in an almost linear dependence of the impedance of the plasmonic transmission line on the thickness of the insulator layer. On the other hand, for very thick insulator layer, the impedance does not vary with the insulator layer thickness due to the weak-coupling/decoupling of the surface waves on each metal–insulator interface. We demonstrate the effectiveness of our proposed formulation using two test scenarios, namely, almost zero reflection in T-junction and reflection from line discontinuity in the design of Bragg reflectors, where we compare our formulation against previously published results.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

Original Manuscript: November 21, 2011
Manuscript Accepted: February 3, 2012
Published: March 12, 2012

Hamid Nejati and Ahmad Beirami, "Theoretical analysis of the characteristic impedance in metal–insulator–metal plasmonic transmission lines," Opt. Lett. 37, 1050-1052 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, Phys. Rev. B 73, 035407 (2006).
  2. G. Veronis and S. Fan, Proc. SPIE 6123, JThC94 (2006).
  3. A. Hosseini, H. Nejati, and Y. Massoud, Opt. Express 15, 15280 (2007).
  4. A. Hosseini, H. Nejati, and Y. Massoud, IEEE ISCAS 92, 2346 (2008). [CrossRef]
  5. H. Ditlbacher, J. Krenn, G. Schider, A. Leitner, and F. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002). [CrossRef]
  6. Z. Han, E. Forsberg, and S. He, IEEE Photon. Technol. Lett. 19, 91 (2007).
  7. A. Hosseini, H. Nejati, and Y. Massoud, Appl. Phys. Lett. 92, 013116 (2008). [CrossRef]
  8. G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  9. A. Hosseini, H. Nejati, and Y. Massoud, Opt. Express 16, 1475 (2006).
  10. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, Phys. Rev. B 79, 035120 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited