OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 15 — Aug. 1, 2013
  • pp: 2804–2806

Current steering detection scheme of three terminal antenna-coupled terahertz field effect transistor detectors

Péter Földesy  »View Author Affiliations

Optics Letters, Vol. 38, Issue 15, pp. 2804-2806 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An antenna-coupled field effect transistor (FET) as a plasma wave terahertz detector is used with the current steering to record separately the gate–source and gate–drain photoresponses and their phase sensitive combination. This method is based on the observation that the plasmon–terminal coupling is cut off in saturation, resulting in only one-sided sensitivity. A polarimetric example is presented with intensity and polarization angle reconstruction using a single three-terminal antenna-coupled Si-metal-oxide semiconductor FET (MOSFET). The technique is applicable to various detection schemes and technologies (high electron mobility transistors and GaAs-, GaN-, and Si-MOSFETs), and other application possibilities are discussed.

© 2013 Optical Society of America

OCIS Codes
(040.2235) Detectors : Far infrared or terahertz
(250.0040) Optoelectronics : Detectors
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Optical Devices

Original Manuscript: June 4, 2013
Manuscript Accepted: June 20, 2013
Published: July 29, 2013

Péter Földesy, "Current steering detection scheme of three terminal antenna-coupled terahertz field effect transistor detectors," Opt. Lett. 38, 2804-2806 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993). [CrossRef]
  2. M. Tonouchi, Nat. Photonics 1, 97 (2007). [CrossRef]
  3. W. Knap, S. Rumyantsev, M. Vitiello, D. Coquillat, S. Blin, N. Dyakonova, M. Shur, F. Teppe, A. Tredicucci, and T. Nagatsuma, Nanotechnology 24, 214002 (2013). [CrossRef]
  4. J. Lu and M. Shur, in Twelfth International Symposium on Space Terahertz Technology (NASA Jet Propulsion Laboratory, 2001), Vol. 1, p. 103.
  5. M. Sakowicz, M. Lifshits, O. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, J. Appl. Phys. 110, 054512 (2011). [CrossRef]
  6. S. Preu, S. Kim, R. Verma, P. Burke, N. Vinh, M. Sherwin, and A. Gossard, IEEE Trans. Terahertz Sci. Technol. 2, 278 (2012).
  7. E. Castro-Camus, J. Infrared Millimeter Waves 33, 418 (2012). [CrossRef]
  8. R. Zhang, Y. Cui, W. Sun, and Y. Zhang, Appl. Opt. 47, 6422 (2008). [CrossRef]
  9. N. C. Van der Valk, W. A. van der Marel, and P. Planken, Opt. Lett. 30, 2802 (2005). [CrossRef]
  10. E. Castro-Camus, J. Lloyd-Hughes, M. Johnston, M. Fraser, H. Tan, and C. Jagadish, Appl. Phys. Lett. 86, 254102 (2005). [CrossRef]
  11. G. Png, S. Mickan, T. Rainsford, and D. Abbott, Proc. SPIE 5649, 768 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited