OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 15 — Aug. 1, 2013
  • pp: 2842–2845

Broadband 8 μm long hybrid silicon-plasmonic transverse magnetic–transverse electric converter with losses below 2 dB

L. Sánchez and P. Sanchis  »View Author Affiliations

Optics Letters, Vol. 38, Issue 15, pp. 2842-2845 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (572 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel ultracompact (8 μm length) hybrid silicon-plasmonic TM–TE converter is reported. The conversion is achieved during a partial power coupling between a waveguide and a hybrid plasmonic parallel waveguide. The impact of different types of metals is also analyzed. At a wavelength of 1.55 μm, the device has an extinction ratio (ER) of 27.6 dB and insertion loss (IL) of 1.75 dB. Furthermore, an optical bandwidth as large as 100 nm is achieved with ERs higher than 25 dB and ILs below 2 dB.

© 2013 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(230.5440) Optical devices : Polarization-selective devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

Original Manuscript: May 22, 2013
Revised Manuscript: July 4, 2013
Manuscript Accepted: July 4, 2013
Published: July 29, 2013

L. Sánchez and P. Sanchis, "Broadband 8 μm long hybrid silicon-plasmonic transverse magnetic–transverse electric converter with losses below 2 dB," Opt. Lett. 38, 2842-2845 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali and S. Fathpour, IEEE J. Lightwave Technol. 24, 4600 (2006). [CrossRef]
  2. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Alwater, IEEE J. Sel. Top. Quantum Electron. 16, 295 (2010). [CrossRef]
  3. S. Zhu, G. Q. Lo, and D. L. Kwong, IEEE Photon. Technol. Lett. 24, 1224 (2012). [CrossRef]
  4. L. Y. M. Tobing, L. Tjahjana, and D. H. Zhang, Appl. Phys. Lett. 101, 041117 (2012). [CrossRef]
  5. D. Y. Fedyanin, A. V. Krasavin, A. V. Arsenin, and A. V. Zayats, Nano Lett. 12, 2459 (2012). [CrossRef]
  6. C. A. Ramos, R. Halir, A. O. Moñux, P. Cheben, L. Vivien, I. M. Fernández, D. M. Morini, S. Janz, D. X. Xu, and J. Schmid, Opt. Lett. 37, 3534 (2012). [CrossRef]
  7. H. Zhang, S. Das, Y. Huang, C. Li, and S. Chen, Appl. Phys. Lett. 101, 021105 (2012). [CrossRef]
  8. M. Aamer, A. M. Gutierrez, A. Brimont, D. Vermeulen, G. Roelkens, J. M. Fedeli, A. Håkansson, and P. Sanchis, IEEE Photon. Technol. Lett. 24, 2031 (2012). [CrossRef]
  9. K. Nakayama, Y. Shoji, and T. Mizumoto, IEEE Photon. Technol. Lett. 24, 1310 (2012). [CrossRef]
  10. M. Komatsu, K. Saitoh, and M. Koshiba, IEEE Photon. J. 4, 707 (2012). [CrossRef]
  11. J. N. Caspers, M. Z. Alam, and M. Mojahedi, Opt. Lett. 37, 4615 (2012). [CrossRef]
  12. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  13. S. Roberts, Phys. Rev. 118, 1509 (1960). [CrossRef]
  14. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, Opt. Lett. 37, 4814 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited