OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 2 — Jan. 15, 2013
  • pp: 220–222

Efficient mode converter design using asymmetric graded index photonic structures

B. B. Oner, M. Turduev, I. H. Giden, and H. Kurt  »View Author Affiliations

Optics Letters, Vol. 38, Issue 2, pp. 220-222 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Asymmetric graded-index (GRIN) inhomogeneous medium is proposed to enable even-to-odd mode conversion. An exponential refractive index profile is implemented to induce an asymmetric refractive index distribution. A two-dimensional photonic crystal structure composed of constant dielectric radii with rectangular unit cells is deployed. Efficient mode transformation in a compact structure may promote the manipulation of light for the creation of other types of higher-order modes in asymmetric GRIN structures.

© 2013 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(110.2760) Imaging systems : Gradient-index lenses
(130.3120) Integrated optics : Integrated optics devices
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: November 26, 2012
Revised Manuscript: December 13, 2012
Manuscript Accepted: December 13, 2012
Published: January 14, 2013

B. B. Oner, M. Turduev, I. H. Giden, and H. Kurt, "Efficient mode converter design using asymmetric graded index photonic structures," Opt. Lett. 38, 220-222 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). [CrossRef]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987). [CrossRef]
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  4. H. Kurt and D. S. Citrin, Opt. Express 15, 1240 (2007). [CrossRef]
  5. H. Kurt and D. S. Citrin, IEEE Photon. Technol. Lett. 19, 1532 (2007). [CrossRef]
  6. O. Cakmak, E. Colak, H. Caglayan, H. Kurt, and E. Ozbay, J. Appl. Phys. 105, 103708 (2009). [CrossRef]
  7. E. Centeno, D. Cassagne, and J. P. Albert, Phys. Rev. B 73, 235119 (2006). [CrossRef]
  8. F. Gaufillet and É. Akmansoy, Opt. Commun. 285, 2638 (2012). [CrossRef]
  9. C. Tan, T. Niemi, C. Peng, and M. Pessa, Opt. Commun. 284, 3140 (2011). [CrossRef]
  10. B. Vasic, G. Isic, R. Gajic, and K. Hingerl, Opt. Express 18, 20321 (2010). [CrossRef]
  11. J. Castro, D. Geraghty, S. Honkanen, C. Greiner, D. Iazikov, and T. Mossberg, Opt. Express 13, 4180 (2005). [CrossRef]
  12. J. Castillo, J. Castro, R. Kostuk, and D. Geraghty, Photon. Technol. Lett. 19, 85 (2007). [CrossRef]
  13. J. Kurz, J. Huang, X. Xie, T. Saida, and M. Fejer, Opt. Lett. 29, 551 (2004). [CrossRef]
  14. M. Pruessner, J. Khurgin, T. Stievater, W. Rabinovich, R. Bass, J. Boos, and V. Urick, Opt. Lett. 36, 2230 (2011). [CrossRef]
  15. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Express, 2007).
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method(Artech House, 2005).
  17. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010). [CrossRef]
  18. J. P. Berenger, J. Comput. Phys. 114, 185 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited