OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 38, Iss. 5 — Mar. 1, 2013
  • pp: 667–669

Transverse mode switchable fiber laser through wavelength tuning

Biao Sun, Anting Wang, Lixin Xu, Chun Gu, Yong Zhou, Zhongxi Lin, Hai Ming, and Qiwen Zhan  »View Author Affiliations

Optics Letters, Vol. 38, Issue 5, pp. 667-669 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a fiber laser design that is capable of producing switchable transverse modes through wavelength tuning. The transverse mode switching is realized by exploiting the particular transverse mode-wavelength association characteristics of the few-mode fiber Bragg grating. Different transverse mode outputs with high spatial mode quality can be obtained by adjusting the oscillating wavelength with a tunable filter within the fiber laser cavity. For each of the spatial mode outputs, the laser operates at the corresponding single wavelength with narrow linewidth. Through adding polarization controllers in the laser cavity, output modes with cylindrical vector polarization are also realized.

© 2013 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(260.5430) Physical optics : Polarization
(140.3615) Lasers and laser optics : Lasers, ytterbium
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 3, 2012
Revised Manuscript: January 11, 2013
Manuscript Accepted: January 11, 2013
Published: February 22, 2013

Biao Sun, Anting Wang, Lixin Xu, Chun Gu, Yong Zhou, Zhongxi Lin, Hai Ming, and Qiwen Zhan, "Transverse mode switchable fiber laser through wavelength tuning," Opt. Lett. 38, 667-669 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, J. Lightwave Technol. 18, 230 (2000). [CrossRef]
  2. C. Lu and Y. Cui, J. Lightwave Technol. 24, 598 (2006). [CrossRef]
  3. S. Thomas Lee, R. Dinesh Kumar, P. Suresh Kumar, P. Radhakrishnan, C. P. G. Vallabhan, and V. P. N. Nampoori, Opt. Commun. 224, 237 (2003). [CrossRef]
  4. Z. Yong, C. Zhan, J. Lee, S. Yin, and P. Ruffin, Opt. Lett. 31, 1794 (2006). [CrossRef]
  5. K. H. Wanser, Proc. SPIE 2360, 265 (1994). [CrossRef]
  6. X. Feng, Y. Liu, S. Fu, S. Yuan, and X. Dong, IEEE Photon. Technol. Lett. 16, 762 (2004). [CrossRef]
  7. D. S. Moon, U. C. Paek, and Y. Chung, Opt. Express 12, 6147 (2004). [CrossRef]
  8. C.-L. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, Opt. Commun. 252, 52 (2005). [CrossRef]
  9. L. Su and C. Lu, Electron. Lett. 41, 11 (2005). [CrossRef]
  10. S. Lei, L. Chao, H. Jianzhong, L. Zhihong, and W. Yixin, IEEE Photon. Technol. Lett. 17, 315 (2005). [CrossRef]
  11. S. Fu, L. Si, Z. Guo, S. Yuan, Y. Zhao, and X. Dong, Appl. Opt. 46, 3579 (2007). [CrossRef]
  12. D. Yang, P. Jiang, Y. Wang, B. Wu, and Y. Shen, Opt. Laser Technol. 42, 575 (2010). [CrossRef]
  13. Z. Lin, A. Wang, L. Xu, B. Sun, C. Gu, and H. Ming, J. Lightwave Technol. 30, 3540 (2012). [CrossRef]
  14. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, Opt. Lett. 37, 464 (2012). [CrossRef]
  15. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited