OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 1 — Jan. 1, 2014
  • pp: 142–145

Optical-to-RF phase shift conversion-based microwave photonic phase shifter using a fiber Bragg grating

Xudong Wang, Erwin H. W. Chan, and Robert A. Minasian  »View Author Affiliations

Optics Letters, Vol. 39, Issue 1, pp. 142-145 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (345 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel microwave photonic phase shifter structure is presented. It is based on the conversion of the optical carrier phase shift into an RF signal phase shift via controlling the carrier wavelength of a single-sideband RF-modulated optical signal into a fiber Bragg grating. The new microwave photonic phase shifter has a simple structure and only requires a single control to shift the RF signal phase. It also has the ability to realize multiple phase shifts. Experimental results demonstrate a continuous 0°–360° phase shift with low amplitude variation of <2dB and low phase deviation of <5° over a wideband microwave range.

© 2013 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(280.5110) Remote sensing and sensors : Phased-array radar
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: September 3, 2013
Revised Manuscript: October 24, 2013
Manuscript Accepted: November 6, 2013
Published: December 24, 2013

Xudong Wang, Erwin H. W. Chan, and Robert A. Minasian, "Optical-to-RF phase shift conversion-based microwave photonic phase shifter using a fiber Bragg grating," Opt. Lett. 39, 142-145 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Loayssa and F. J. Lahoz, IEEE Photon. Technol. Lett. 18, 208 (2006). [CrossRef]
  2. Y. Dong, H. He, W. Hu, Z. Li, Q. Wang, W. Kuang, T. H. Cheng, Y. J. Wen, Y. Wang, and C. Lu, Opt. Lett. 32, 745 (2007). [CrossRef]
  3. H. Chen, Y. Dong, H. He, W. Hu, and L. Li, Opt. Lett. 34, 2375 (2009). [CrossRef]
  4. X. Xue, X. Zheng, H. Zhang, and B. Zhou, Opt. Lett. 36, 4641 (2011). [CrossRef]
  5. H. Shahoei and J. Yao, Opt. Express 20, 14009 (2012). [CrossRef]
  6. W. Xue, S. Sales, J. Capmany, and J. Mork, Opt. Express 18, 6156 (2010). [CrossRef]
  7. X. Sun, S. Fu, K. Xu, J. Zhou, P. Shum, J. Yin, X. Hong, J. Wu, and J. Lin, IEEE Trans. Microwave Theor. Tech. 58, 3206 (2010).
  8. X. Yi, T. X. H. Huang, and R. A. Minasian, IEEE Photon. Technol. Lett. 23, 1286 (2011). [CrossRef]
  9. E. H. W. Chan, W. Zhang, and R. A. Minasian, J. Lightwave Technol. 30, 3672 (2012). [CrossRef]
  10. S. Ohshima, K. Ide, and H. Ibe, J. Lightwave Technol. 25, 1537 (2007). [CrossRef]
  11. Agilent 81960A compact tunable laser source data sheet (2012).
  12. R. Hernandez, A. Loayssa, and D. Benito, Opt. Eng. 43, 2418 (2004). [CrossRef]
  13. R. Kashyap, Fiber Bragg Gratings (Elsevier, 2010).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited