OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 1 — Jan. 1, 2014
  • pp: 26–29

Nonlinearly enhanced refractive index sensing in coupled optical microresonators

Chao Wang and Christopher P. Search  »View Author Affiliations

Optics Letters, Vol. 39, Issue 1, pp. 26-29 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the use of nonlinear self-phase modulation (SPM) in coupled optical microresonators for ultrasensitive refractive index sensing. SPM leads to a positive feedback enhancement of the resonance frequency shift caused by a perturbation of the index of refraction in a resonator. Moreover, the use of two resonators coupled through input and output waveguides leads to a further improvement in the sensitivity owing to constructive interference and feedback via the waveguides. For parameters based on Si microresonators, the sensitivity is more than 102 larger than a single resonator without SPM leading to a minimum detectable index change of 1011RIU with resonator Q-factors of 104. We show that the nonlinearly enhanced system is robust with respect to laser noise when operated at input powers below the onset of bistability.

© 2013 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(190.1450) Nonlinear optics : Bistability
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optical Devices

Original Manuscript: August 9, 2013
Revised Manuscript: October 23, 2013
Manuscript Accepted: November 13, 2013
Published: December 17, 2013

Chao Wang and Christopher P. Search, "Nonlinearly enhanced refractive index sensing in coupled optical microresonators," Opt. Lett. 39, 26-29 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, Anal. Chem. Acta 620, 8 (2008).
  2. M. C. Estevez, M. Álvarez, and L. M. Lechuga, Laser Photonics Rev. 6, 463 (2012). [CrossRef]
  3. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, J. Biophotonics 2, 212 (2009). [CrossRef]
  4. I. M. White and X. Fan, Opt. Express 16, 1020 (2008). [CrossRef]
  5. Y. Xiao, V. Gaddam, and L. Yang, Opt. Express 16, 12538 (2008). [CrossRef]
  6. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, Opt. Express 19, 22191 (2011). [CrossRef]
  7. Q. Quan, F. Vollmer, I. B. Burgess, P. B. Deotare, I. W. Frank, S. K. Y. Tang, R. Illic, and M. Loncar, Conference on Laser and Electro Optics (Optical Society of America, 2011), paper QThH6.
  8. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, J. Lightwave Technol. 15, 998 (1997). [CrossRef]
  9. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, Appl. Phys. Lett. 80, 416 (2002). [CrossRef]
  10. V. R. Almeida and M. Lipson, Opt. Lett. 29, 2387 (2004). [CrossRef]
  11. Q. Xu and M. Lipson, Opt. Lett. 31, 341 (2006). [CrossRef]
  12. L. Y. Mario, S. Darmawan, and M. K. Chin, Opt. Express 14, 12770 (2006). [CrossRef]
  13. M. A. Guillen-Torres, E. Cretu, N. A. F. Jaeger, and L. Chrostowski, J. Lightwave Technol. 30, 1802 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited