OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 11 — Jun. 1, 2014
  • pp: 3094–3097

Dynamic control of wideband slow wave in graphene based waveguides

Ran Hao, JiaMin Jin, XiLiang Peng, and Erping Li  »View Author Affiliations

Optics Letters, Vol. 39, Issue 11, pp. 3094-3097 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (593 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enlarged group index has been reported previously when surface plasmons propagate through the graphene sheet, yet a clear slow wave performance in graphene has not been explored. We proposed and numerically analyzed here for the first time to the best of our knowledge an extremely wideband slow surface wave in a graphene-based grating waveguide. The strongly delayed wave ( 120 < n g < 167 ) with extremely large bandwidth ( 2.7 THz > Δ f > 0.7 THz ) can be dynamically controlled via the gate-voltage dependent optical properties of graphene. Our results suggest that graphene may be a very promising slow light medium, promoting future slow light devices based on graphene.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

Original Manuscript: February 26, 2014
Revised Manuscript: April 12, 2014
Manuscript Accepted: April 17, 2014
Published: May 16, 2014

Ran Hao, JiaMin Jin, XiLiang Peng, and Erping Li, "Dynamic control of wideband slow wave in graphene based waveguides," Opt. Lett. 39, 3094-3097 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Krauss, Nat. Photonics 2, 448 (2008). [CrossRef]
  2. A. Zadok, A. Eyal, and M. Tur, Appl. Opt. 50, E38 (2011). [CrossRef]
  3. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, Opt. Express 18, 16309 (2010). [CrossRef]
  4. Y. Xu, J. Zhang, and G. Song, IEEE Photon. Technol. Lett. 25, 410 (2013). [CrossRef]
  5. D. Gao, J. Hou, R. Hao, H. Wu, J. Guo, E. Cassan, and X. Zhang, IEEE Photon. Technol. Lett. 22, 1135 (2010). [CrossRef]
  6. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, Opt. Express 18, 5942 (2010). [CrossRef]
  7. R. Hao, E. Cassan, K. Hamza, J. Hou, X. Le Roux, D. Marris-Morini, L. Vivien, D. Gao, Z. Zhou, and X. Zhang, IEEE Photon. Technol. Lett. 22, 844 (2010). [CrossRef]
  8. J. Li, T. White, L. Faolain, A. Gomez-Iglesias, and T. Krauss, Opt. Express 16, 6227 (2008). [CrossRef]
  9. A. Casas-Bedoya, C. Husko, C. Monat, C. Grillet, N. Gutman, P. Domachuk, and B. J. Eggleton, Opt. Lett. 37, 4215 (2012). [CrossRef]
  10. R. Integlia, W. Song, J. Tan, and W. Jiang, J. Nanosci. Nanotechnol. 10, 1596 (2010). [CrossRef]
  11. A. Vakil and N. Engheta, Science 332, 1291 (2011). [CrossRef]
  12. R. Hao, W. Du, H. Chen, X. Jin, L. Yang, and E. Li, Appl. Phys. Lett. 103, 061116 (2013). [CrossRef]
  13. Q. Xu, V. Almeida, R. Panepucci, and M. Lipson, Opt. Lett. 29, 1626 (2004). [CrossRef]
  14. A. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, Phys. Rev. B 84, 161407 (2011). [CrossRef]
  15. Y. Zhang, Y. Zhao, D. Wu, and Q. Wang, Sens. Actuators B 173, 505 (2012). [CrossRef]
  16. W. Song, R. Integlia, and W. Jiang, Phys. Rev. B 82, 235306 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited