OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 11 — Jun. 1, 2014
  • pp: 3118–3121

Resolution enhancement of confocal microscopy by subtraction method with vector beams

Susumu Segawa, Yuichi Kozawa, and Shunichi Sato  »View Author Affiliations

Optics Letters, Vol. 39, Issue 11, pp. 3118-3121 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (450 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We proposed a subtraction method using vector beams for resolution enhancement in confocal microscopy. The imaging simulation revealed that the negative side lobe due to the excess subtraction resulted in the degradation of the object image. The subtraction imaging using vector beams demonstrated high spatial resolution with avoiding the negative side lobe. Further resolution enhancement beyond 100 nm was predicted by using a flat-top beam obtained by the combination of beams with radial and azimuthal polarizations and a higher-order transverse mode azimuthally polarized beam without significant negative side lobe.

© 2014 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(180.1790) Microscopy : Confocal microscopy
(260.5430) Physical optics : Polarization

ToC Category:

Original Manuscript: March 12, 2014
Revised Manuscript: March 31, 2014
Manuscript Accepted: April 14, 2014
Published: May 19, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Susumu Segawa, Yuichi Kozawa, and Shunichi Sato, "Resolution enhancement of confocal microscopy by subtraction method with vector beams," Opt. Lett. 39, 3118-3121 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  2. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994). [CrossRef]
  3. M. J. Rust, M. Bates, and X. Zhuang, Nat. Methods 3, 793 (2006). [CrossRef]
  4. M. G. L. Gustafsson, J. Microsc. 198, 82 (2000). [CrossRef]
  5. S. J. Hewlett and T. Wilson, Mach. Vis. Appl. 4, 233 (1991). [CrossRef]
  6. E. Sánchez-Ortiga, C. J. R. Sheppard, G. Saavedra, M. Martínez-Corral, A. Doblas, and A. Calatayud, Opt. Lett. 37, 1280 (2012). [CrossRef]
  7. O. Haeberlé and B. Simon, Opt. Commun. 282, 3657 (2009). [CrossRef]
  8. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, Sci. Rep. 3, 1441 (2013). [CrossRef]
  9. H. Dehez, M. Piché, and Y. D. Konick, Opt. Express 21, 15912 (2013). [CrossRef]
  10. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  11. P. D. Higdon, P. Török, and T. Wilson, J. Microsc. 193, 127 (1999). [CrossRef]
  12. M. R. Foreman and P. Török, J. Mod. Opt. 58, 339 (2011). [CrossRef]
  13. Y. Kozawa and S. Sato, J. Opt. Soc. Am. A 24, 1793 (2007). [CrossRef]
  14. Y. Kozawa and S. Sato, J. Opt. Soc. Am. A 29, 2439 (2012). [CrossRef]
  15. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000). [CrossRef]
  16. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000). [CrossRef]
  17. Q. Zhan and J. R. Leger, Opt. Express 10, 324 (2002). [CrossRef]
  18. A. G. York, P. Chandris, D. D. Nogare, J. Head, P. Wawrzusin, R. S. Fischer, A. Chitnis, and H. Shroff, Nat. Methods 10, 1122 (2013). [CrossRef]
  19. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, Opt. Express 19, 15947 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited