OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 11 — Jun. 1, 2014
  • pp: 3227–3230

Plasmonic bandpass filters with cascaded rectangular ring resonators

Chyong-Hua Chen  »View Author Affiliations

Optics Letters, Vol. 39, Issue 11, pp. 3227-3230 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically present the analysis and design of a nanoplasmonic bandpass filter with flat-top spectral characteristics by cascading a series of directly connected rectangular ring resonators based on metal–insulator–metal waveguides. Analyzed by the equivalent lumped circuit model of the transmission line to plasmonic waveguides, the transmission properties of a symmetric rectangular ring resonator with the directly connected input and output waveguides are approximately the same as that of a Fabry–Perot resonator. Then the thin-film design methodology is applied to realize a plasmonic bandpass filter with the squared passband. An example of cascaded two-rectangular ring resonator structure is numerically demonstrated by using the transmission line model and 2D finite difference time domain method.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(310.4165) Thin films : Multilayer design
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: February 26, 2014
Revised Manuscript: April 10, 2014
Manuscript Accepted: April 15, 2014
Published: May 26, 2014

Chyong-Hua Chen, "Plasmonic bandpass filters with cascaded rectangular ring resonators," Opt. Lett. 39, 3227-3230 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ozbay, Science 311, 189 (2006). [CrossRef]
  2. T. W. Lee and S. Gray, Opt. Express 13, 9652 (2005). [CrossRef]
  3. G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  4. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, Nat. Mater. 9, 21 (2010). [CrossRef]
  5. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, Nat. Photonics 3, 283 (2009). [CrossRef]
  6. A. Hosseini and Y. Massoud, Appl. Phys. Lett. 90, 181102 (2007). [CrossRef]
  7. A. Setayesh, S. R. Mirnaziry, and M. S. Abrishamian, J. Opt. 13, 035004 (2011). [CrossRef]
  8. T. B. Wang, X. W. Wen, C. P. Yin, and H. Z. Wang, Opt. Express 17, 24096 (2009). [CrossRef]
  9. J. X. Tan, Y. B. Xie, J. W. Dong, and H. Z. Wang, Plasmonics 7, 435 (2012). [CrossRef]
  10. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Appl. Opt. 37, 5271 (1998). [CrossRef]
  11. K. Chang and L. H. Hsieh, Microwave Ring Circuits and Related Structures (Wiley, 2004).
  12. C. H. Chen and K. S. Liao, Opt. Express 21, 4036 (2013). [CrossRef]
  13. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, IEEE J. Sel. Top. Quantum Electron. 14, 1462 (2008). [CrossRef]
  14. H. Nejati and A. Beirami, Opt. Lett. 37, 1050 (2012). [CrossRef]
  15. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill, 1989).
  16. C.-H. Chen, K. Tetz, W. Nakagawa, and Y. Fainman, Appl. Opt. 44, 1503 (2005). [CrossRef]
  17. C.-H. Chen and Y. Fainman, IEEE J. Sel. Top. Quantum Electron. 13, 262 (2007). [CrossRef]
  18. Y. V. Troitski, Appl. Opt. 34, 4717 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited