OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 11 — Jun. 1, 2014
  • pp: 3258–3261

Diversity-multiplexing tradeoff in mode-division multiplexing

Sercan Ö. Arık and Joseph M. Kahn  »View Author Affiliations

Optics Letters, Vol. 39, Issue 11, pp. 3258-3261 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The capacity of mode-division multiplexing (MDM) systems is limited, for a given outage probability, by mode-dependent loss (MDL) and gain. Modal degrees of freedom may be exploited to increase transmission rate (multiplexing gain) or lower outage probability (diversity gain), but there is a fundamental tradeoff between the achievable multiplexing and diversity gains. In this Letter, we present the diversity-multiplexing tradeoff in MDM systems for the first time, studying the impact of signal-to-noise ratio, MDL, and frequency diversity order on the tradeoff in the strong-mode-coupling regime.

© 2014 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4230) Fiber optics and optical communications : Multiplexing
(060.4510) Fiber optics and optical communications : Optical communications

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 21, 2014
Revised Manuscript: March 27, 2014
Manuscript Accepted: April 16, 2014
Published: May 27, 2014

Sercan Ö. Arık and Joseph M. Kahn, "Diversity-multiplexing tradeoff in mode-division multiplexing," Opt. Lett. 39, 3258-3261 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. J. Essiambre and R. W. Tkach, Proc. IEEE 100, 1035 (2012). [CrossRef]
  2. T. Morioka, Y. Awaji, R. Ryf, P. J. Winzer, D. Richardson, and F. Poletti, IEEE Commun. Mag. 50(2), 31 (2012). [CrossRef]
  3. K.-P. Ho and J. M. Kahn, Opt. Express 19, 16612 (2011). [CrossRef]
  4. K.-P. Ho and J. M. Kahn, in Optical Fiber Telecommunications VI, I. P. Kaminow, T. Li, and A. E. Willner, eds., (Elsevier, 2013), pp. 491–568.
  5. P. J. Winzer and G. J. Foschini, Opt. Express 19, 16680 (2011). [CrossRef]
  6. P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar, and H. Lu, IEEE Trans. Inf. Theory 52, 3869 (2006). [CrossRef]
  7. Z. Lizhong and D. Tse, IEEE Trans. Inf. Theory 49, 1073 (2003). [CrossRef]
  8. L. Zhao, W. Mo, Y. Ma, and Z. Wang, IEEE Trans. Inf. Theory 53, 1549 (2007). [CrossRef]
  9. R. Narasimhan, IEEE Trans. Inf. Theory 52, 3965 (2006). [CrossRef]
  10. A. Medles and D. Slock, in Proceedings of IEEE International Symposium on Information Theory (IEEE, 2005), pp. 1813–1817.
  11. D. Tse, P. Viswanath, and L. Zheng, IEEE Trans. Inf. Theory 50, 1859 (2004). [CrossRef]
  12. S. Ö. Arik, J. M. Kahn, and K.-P. Ho, IEEE Signal Process. Mag. 31(2), 25 (2014). [CrossRef]
  13. S. Ö. Arik, D. Askarov, and J. M. Kahn, J. Lightwave Technol. 31, 423 (2013). [CrossRef]
  14. S. Mumtaz, R. Essiambre, and G. Agrawal, J. Lightwave Technol. 31, 398 (2013). [CrossRef]
  15. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, J. Lightwave Technol. 28, 662 (2010). [CrossRef]
  16. K.-P. Ho, J. Lightwave Technol. 30, 3603 (2012). [CrossRef]
  17. K.-P. Ho and J. M. Kahn, J. Lightwave Technol. 29, 3719 (2011). [CrossRef]
  18. C. Marco, D. Dardari, and M. K. Simon, IEEE Trans. Wirel. Commun. 2, 840 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited