OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 11 — Jun. 1, 2014
  • pp: 3301–3304

Rayleigh–Brillouin scattering of carbon dioxide

Z. Y. Gu, W. Ubachs, and W. van de Water  »View Author Affiliations

Optics Letters, Vol. 39, Issue 11, pp. 3301-3304 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral line shape of spontaneous Rayleigh–Brillouin scattering in CO2 is studied in a range of pressures. The spectrum is influenced by the bulk viscosity ηb, which is a relaxation phenomenon involving the internal degrees of freedom of the molecule. The associated relaxation rates can be compared to the frequency shift of the scattered light, which demands precise measurements of the spectral line shape. We find ηb=(5.7±0.6)×106kgm1s1 for the range of pressures p=24 bar and for room temperature conditions.

© 2014 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(140.6810) Lasers and laser optics : Thermal effects
(290.5830) Scattering : Scattering, Brillouin
(290.5840) Scattering : Scattering, molecules
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:

Original Manuscript: April 4, 2014
Revised Manuscript: April 23, 2014
Manuscript Accepted: April 24, 2014
Published: May 29, 2014

Z. Y. Gu, W. Ubachs, and W. van de Water, "Rayleigh–Brillouin scattering of carbon dioxide," Opt. Lett. 39, 3301-3304 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. G. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 71, 045801 (2005). [CrossRef]
  2. Z. Y. Gu, M. O. Vieitez, E. J. van Duijn, and W. Ubachs, Rev. Sci. Instrum. 83, 053112 (2012). [CrossRef]
  3. B. Witschas, C. Lemmerz, and O. Reitebuch, Opt. Lett. 39, 1972 (2014). [CrossRef]
  4. K. Liang, Y. Ma, J. Huang, H. Li, and Y. Yu, Appl. Phys. B 105, 421 (2011). [CrossRef]
  5. “ADM-Aeolus: Science Report,” (ESA Communication Production Office, 2008).
  6. J. Lambert, Vibrational and Rotational Relaxation in Gases (Clarendon, 1977).
  7. Q. H. Lao, P. E. Schoen, and B. Chu, J. Chem. Phys. 64, 3547 (1976). [CrossRef]
  8. X. G. Pan, M. N. Shneider, and R. B. Miles, Phys. Rev. A 69, 033814 (2004). [CrossRef]
  9. A. S. Meijer, A. S. de Wijn, M. F. E. Peters, N. J. Dam, and W. van de Water, J. Chem. Phys. 133, 164315 (2010). [CrossRef]
  10. C. D. Boley, R. C. Desai, and G. Tenti, Can. J. Phys. 50, 2158 (1972). [CrossRef]
  11. G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).
  12. A. Chapman and T. G. Cowling, Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge Mathematical Library, 1970).
  13. W. E. Meador, G. A. Miner, and L. W. Townsend, Phys. Fluids 8, 258 (1996). [CrossRef]
  14. M. O. Vieitez, E.-J. van Duijn, W. Ubachs, B. Witschas, A. S. Meijer, A. S. de Wijn, N. J. Dam, and W. van de Water, Phys. Rev. A 82, 043836 (2010). [CrossRef]
  15. Z. Y. Gu and W. Ubachs, Opt. Lett. 38, 1110 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited