OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 12 — Jun. 15, 2014
  • pp: 3484–3487

280  GHz dark soliton fiber laser

Y. F. Song, J. Guo, L. M. Zhao, D. Y. Shen, and D. Y. Tang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 12, pp. 3484-3487 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (438 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on an ultrahigh repetition rate dark soliton fiber laser. We show both numerically and experimentally that by taking advantage of the cavity self-induced modulation instability and the dark soliton formation in a net normal dispersion cavity fiber laser, stable ultrahigh repetition rate dark soliton trains can be formed in a dispersion-managed cavity fiber laser. Stable dark soliton trains with a repetition rate as high as 280GHz have been generated in our experiment. Numerical simulations have shown that the effective gain bandwidth limitation plays an important role on the stabilization of the formed dark solitons in the laser.

© 2014 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Nonlinear Optics

Original Manuscript: April 3, 2014
Revised Manuscript: May 2, 2014
Manuscript Accepted: May 2, 2014
Published: June 6, 2014

Y. F. Song, J. Guo, L. M. Zhao, D. Y. Shen, and D. Y. Tang, "280  GHz dark soliton fiber laser," Opt. Lett. 39, 3484-3487 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973). [CrossRef]
  2. Y. S. Kivshar, IEEE J. Quantum Electron. 29, 250 (1993). [CrossRef]
  3. W. Zhao and E. Bourkoff, Opt. Lett. 14, 703 (1989). [CrossRef]
  4. Y. Chen and J. Atai, Opt. Lett. 16, 1933 (1991). [CrossRef]
  5. P. Emplit, J. P. Hamaide, F. Reynaud, C. Froehly, and A. Barthelemy, Opt. Commun. 62, 374 (1987). [CrossRef]
  6. A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird, and W. J. Tomlinson, Phys. Rev. Lett. 61, 2445 (1988). [CrossRef]
  7. D. J. Richardson, R. P. Chamberlin, L. Dong, and D. N. Payne, Electron. Lett. 30, 1326 (1994). [CrossRef]
  8. A. K. Atieh, P. Myslinske, J. Chrostowski, and P. Galko, Opt. Commun. 133, 541 (1997). [CrossRef]
  9. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, Opt. Lett. 27, 482 (2002). [CrossRef]
  10. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, Phys. Rev. A 80, 045803 (2009). [CrossRef]
  11. D. Y. Tang, L. Li, Y. F. Song, L. M. Zhao, H. Zhang, and D. Y. Shen, Phys. Rev. A 88, 013849 (2013). [CrossRef]
  12. E. Yoshida and M. Nakazawa, Opt. Lett. 22, 1409 (1997). [CrossRef]
  13. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, Opt. Lett. 27, 915 (2002). [CrossRef]
  14. M. Haelterman, S. Trillo, and S. Wabnitz, Opt. Lett. 17, 745 (1992). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited