OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 12 — Jun. 15, 2014
  • pp: 3496–3499

Self-aligned optical couplings by self-organized waveguides toward luminescent targets in organic/inorganic hybrid materials

Tetsuzo Yoshimura, Makoto Iida, and Hideyuki Nawata  »View Author Affiliations

Optics Letters, Vol. 39, Issue 12, pp. 3496-3499 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Self-organization of optical waveguides is observed between two opposed optical fibers placed in a photosensitive organic/inorganic hybrid material, Sunconnect. A luminescent target containing coumarin 481 was deposited onto the edge of one of the two fibers at the core. When a 448-nm write beam was introduced from the other fiber, the write beam and the luminescence from the photoexcited target increased the refractive index of Sunconnect to induce self-focusing. Traces of waveguides were seen to grow from the cores of both fibers and merged into a single self-aligned optical coupling between the fibers. This optical solder functionality enabled increases in both coupling efficiency and tolerance to lateral misalignment of the fibers.

© 2014 Optical Society of America

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(260.5950) Physical optics : Self-focusing
(130.5460) Integrated optics : Polymer waveguides

ToC Category:
Integrated Optics

Original Manuscript: March 11, 2014
Revised Manuscript: April 9, 2014
Manuscript Accepted: April 16, 2014
Published: June 6, 2014

Tetsuzo Yoshimura, Makoto Iida, and Hideyuki Nawata, "Self-aligned optical couplings by self-organized waveguides toward luminescent targets in organic/inorganic hybrid materials," Opt. Lett. 39, 3496-3499 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B. Miller, “How large a system can we build without optics?” Workshop Notes, 8th Annual Workshop on Interconnections within High Speed Digital Systems, Santa Fe, New Mexico, May12, 1997, Lecture 1.2.
  2. N. M. Jokerst, M. A. Brooke, S. Cho, S. Wilkinson, M. Vrazel, S. Fike, J. Tabler, Y. J. Joo, S. Seo, D. S. Wils, and A. Brown, IEEE J. Sel. Top. Quantum Electron. 9, 350 (2003). [CrossRef]
  3. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, J. Lightwave Technol. 22, 2168 (2004). [CrossRef]
  4. E. Bosman, J. Missinne, B. V. Hoe, G. V. Steenberge, S. Kalathimekkad, J. V. Erps, I. Milenkov, K. Panajotov, T. V. Gijseghem, P. Dubruel, H. Thienpont, and P. V. Daele, IEEE J. Sel. Top. Quantum Electron. 17, 617 (2011). [CrossRef]
  5. F. E. Doany, C. L. Schow, B. G. Lee, R. Budd, C. Baks, R. Dangel, R. John, F. Libsch, J. A. Kash, B. Chan, H. Lin, C. Carver, J. Huang, J. Berry, and D. Bajkowski, in Proceedings of 61st Electronic Components & Technology Conference (IEEE, 2011), pp. 790–797.
  6. R. Nair, T. Gu, and M. W. Haney, in IEEE Optical Interconnects Conference (IEEE, 2012), pp. 18–19.
  7. X. Lin, A. Hosseini, X. Dou, H. Subbaraman, and R. T. Chen, Opt. Express 21, 60 (2013). [CrossRef]
  8. T. Yoshimura, Y. Takahashi, M. Inao, M. Lee, W. Chou, S. Beilin, W. V. Wang, J. Roman, and T. Massingill, “Systems based on opto-electronic substrates with electrical and optical interconnections and methods for making,” U.S. patent6,343,171 (January29, 2002).
  9. F. E. Doany, B. G. Lee, S. N. Assefa, W. M. J. Green, M. Yang, C. L. Schow, C. V. Jahnes, S. Zhang, J. Singer, V. I. Kopp, J. A. Kash, and Y. A. Vlasov, J. Lightwave Technol. 29, 475 (2011). [CrossRef]
  10. A. Mekis, S. Gloeckner, G. Masini, A. Narasimha, T. Pinguet, S. Sahni, and P. D. Dobbelaere, IEEE J. Sel. Top. Quantum Electron. 17, 597 (2011). [CrossRef]
  11. S. J. Frisken, Opt. Lett. 18, 1035 (1993). [CrossRef]
  12. A. S. Kewitsch and A. Yariv, Opt. Lett. 21, 24 (1996). [CrossRef]
  13. M. Kagami, T. Yamashita, and H. Ito, Appl. Phys. Lett. 79, 1079 (2001). [CrossRef]
  14. K. Dorkenoo, O. Crégut, L. Mager, and F. Gillot, Opt. Lett. 27, 1782 (2002). [CrossRef]
  15. S. Jradi, O. Soppera, and D. J. Lougnot, Appl. Opt. 47, 3987 (2008). [CrossRef]
  16. T. M. Monro, C. M. de Sterke, and L. Poladian, J. Opt. Soc. Am. B 13, 2824 (1996). [CrossRef]
  17. E. Fazio, M. Alonzo, F. Devaux, A. Toncelli, N. Argiolas, M. Bazzan, C. Sada, and M. Chauvet, Appl. Phys. Lett. 96, 091107 (2010). [CrossRef]
  18. T. Yoshimura, J. Roman, Y. Takahashi, W. V. Wang, M. Inao, T. Ishitsuka, K. Tsukamoto, K. Motoyoshi, and W. Sotoyama, in Proceedings of 50th Electronic Components & Technology Conference (IEEE, 2000), pp. 962–969.
  19. T. Yoshimura and H. Kaburagi, Appl. Phys. Express 1, 062007 (2008). [CrossRef]
  20. T. Yoshimura and M. Seki, J. Opt. Soc. Am. B 30, 1643 (2013). [CrossRef]
  21. M. Seki and T. Yoshimura, Opt. Eng. 51, 074601 (2012). [CrossRef]
  22. H. Nawata, in IEEE CPMT Symposium Japan (IEEE, 2013), pp. 121–124.
  23. T. Sato, Proc. SPIE 7944, 79440M (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited