OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 14 — Jul. 15, 2014
  • pp: 4088–4091

Plasmon mode characteristics of metallic nanowire in uniaxial anisotropic dielectric

Junxue Chen and Xiaolei Wang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 14, pp. 4088-4091 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The plasmon mode characteristics of metallic nanowire embedded in a uniaxial anisotropic dielectric are investigated theoretically. The hybrid plasmon modes found in this structure are significantly different from the traditional plasmon modes of metallic nanowire in a homogeneous isotropic dielectric. In contrast to the transverse-magnetic-like wave for a traditional fundamental mode, the hybrid fundamental mode of metallic nanowire involves a nonzero longitudinal magnetic field component. The degenerate behaviors of adjacent order plasmon modes are demonstrated in the case of a strongly anisotropic dielectric. Moreover, the dependence of the degenerate characteristics on the radius of a metallic nanowire and the excited wavelength are clearly shown by dispersion relation. The results of the study provide a useful approach to modulate surface plasmon polaritons with anisotropic medium.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(260.1440) Physical optics : Birefringence

ToC Category:
Optics at Surfaces

Original Manuscript: April 3, 2014
Revised Manuscript: June 7, 2014
Manuscript Accepted: June 7, 2014
Published: July 3, 2014

Junxue Chen and Xiaolei Wang, "Plasmon mode characteristics of metallic nanowire in uniaxial anisotropic dielectric," Opt. Lett. 39, 4088-4091 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Kiefer and S. Schlücker, Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications (Wiley, 2013).
  2. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997). [CrossRef]
  3. J. X. Chen, P. Wang, X. L. Wang, Y. H. Lu, R. S. Zheng, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 94, 081117 (2009). [CrossRef]
  4. H. C. Zhou, X. Chen, P. Hou, and C. F. Li, Opt. Lett. 33, 1249 (2008). [CrossRef]
  5. H. K. Hunt and A. M. Armani, Nanoscale 2, 1544 (2010). [CrossRef]
  6. J. Feng, V. S. Siu, A. Roelke, V. Mehta, S. Y. Rhieu, G. T. R. Palmore, and D. Pacifici, Nano Lett. 12, 602 (2012). [CrossRef]
  7. E. Ozbay, Science 311, 189 (2006). [CrossRef]
  8. R. Li, C. Cheng, F. F. Ren, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Appl. Phys. Lett. 92, 141115 (2008). [CrossRef]
  9. X. L. Wang, P. Wang, J. X. Chen, Y. H. Lu, H. Ming, and Q. W. Zhan, Appl. Phys. Lett. 98, 021113 (2011). [CrossRef]
  10. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, Nanotechnology 23, 444006 (2012). [CrossRef]
  11. R. Warmbier, G. S. Manyali, and A. Quandt, Phys. Rev. B 85, 085442 (2012). [CrossRef]
  12. I. Abdulhalim, J. Opt. A Pure Appl. Opt. 11, 015002 (2009). [CrossRef]
  13. R. Luo, Y. Gu, X. K. Li, L. J. Wang, I. C. Khoo, and Q. H. Gong, Appl. Phys. Lett. 102, 011117 (2013). [CrossRef]
  14. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, Nano Lett. 4, 1981 (2004). [CrossRef]
  15. D. Pan, H. Wei, and H. X. Xu, Chin. Phys. B 22, 097305 (2013). [CrossRef]
  16. S. P. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, and H. X. Xu, Phys. Rev. Lett. 107, 096801 (2011). [CrossRef]
  17. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, Phys. Rev. Lett. 95, 257403 (2005). [CrossRef]
  18. Y. R. Fang, Z. P. Li, Y. Z. Huang, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett. 10, 1950 (2010). [CrossRef]
  19. H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Nat. Commun. 2, 387 (2011). [CrossRef]
  20. C. L. Chen, J. Lightwave Technol. 5, 53 (1987). [CrossRef]
  21. X. Jiangbo, Z. Zhou, Y. Du, and D. Gong, J. Lightwave Technol. 27, 2989 (2009). [CrossRef]
  22. The detailed description of the solution process will be published elsewhere.
  23. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited