OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 14 — Jul. 15, 2014
  • pp: 4136–4139

Dark state lasers

Cale M. Gentry and Miloš A. Popović  »View Author Affiliations

Optics Letters, Vol. 39, Issue 14, pp. 4136-4139 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (550 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new type of laser resonator based on imaginary energy-level splitting (imaginary coupling or quality factor Q-splitting) in a pair of coupled microcavities. A particularly advantageous arrangement involves two microring cavities with different free-spectral ranges in a configuration wherein they are coupled by far-field interference in a shared radiation channel. A novel Vernier-like effect for laser resonators is designed in which only one longitudinal resonant mode has a lower loss than the small-signal gain and can achieve lasing while all other modes are suppressed. This configuration enables ultrawidely tunable single-frequency lasers based on either homogeneously or inhomogeneously broadened gain media. The concept is an alternative to the common external cavity configurations for achieving tunable single-mode operation in a laser. The proposed laser concept builds on a high-Q “dark state,” which is established by radiative interference coupling and bears a direct analogy to parity-time symmetric Hamiltonians in optical systems. Variants of this concept should be extendable to parametric-gain-based oscillators, enabling widely tunable single-frequency light sources.

© 2014 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 19, 2014
Revised Manuscript: June 6, 2014
Manuscript Accepted: June 6, 2014
Published: July 9, 2014

Cale M. Gentry and Miloš A. Popović, "Dark state lasers," Opt. Lett. 39, 4136-4139 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Verdeyn, Laser Electronics (Prentice-Hall, 1995).
  2. K. Liu and M. G. Littman, Opt. Lett. 6, 117 (1981). [CrossRef]
  3. M. W. Fleming and A. Mooradian, IEEE J. Quantum Electron. 17, 44 (1981). [CrossRef]
  4. Q. Lin, O. J. Painter, and G. P. Agrawal, Opt. Express 15, 16604 (2007). [CrossRef]
  5. K. Oda, N. Takato, and H. Toba, J. Lightwave Technol. 9, 728 (1991). [CrossRef]
  6. M. S. Dahlem, C. W. Holzwarth, H. I. Smith, E. P. Ippen, and M. A. Popović, in Proceedings of Integrated Photonics Research, July, 2010, paper IMC4.
  7. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, J. Mod. Opt. 51, 2515 (2004). [CrossRef]
  8. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006). [CrossRef]
  9. H. A. Haus and W.-P. Huang, Proc. IEEE 79, 1505 (1991). [CrossRef]
  10. W. Suh, Z. Wang, and S. Fan, IEEE J. Quantum Electron. 40, 1511 (2004). [CrossRef]
  11. H. A. Haus, M. A. Popović, M. R. Watts, C. Manolatou, B. E. Little, and S. T. Chu, in Optical Microcavities, K. Vahala, ed. (World Scientific, 2004), pp. 1–37.
  12. M. Benyoucef, J.-B. Shim, J. Wiersig, and O. G. Schmidt, Opt. Lett. 36, 1317 (2011). [CrossRef]
  13. Y. Liu and M. A. Popović, Appl. Phys. Lett. 104, 201102 (2014).
  14. J. M. Shainline, J. Orcutt, M. Wade, K. Nammari, O. Tehar-Zahav, Z. Sternberg, R. Meade, R. J. Ram, V. Stojanović, and M. A. Popović, Opt. Lett. 38, 2729 (2013). [CrossRef]
  15. Y. Liu, J. Shainline, X. Zeng, and M. A. Popović, Opt. Lett. 39, 335 (2014). [CrossRef]
  16. Y. H. Ding, X. B. Zhang, X. L. Zhang, and D. X. Huang, Opt. Commun. 281, 5315 (2008). [CrossRef]
  17. Y. Zhang, T. Mei, and D. Zhang, Appl. Opt. 51, 504 (2012). [CrossRef]
  18. X. Zhang, D. Huang, and X. Zhang, Opt. Express 15, 13557 (2007). [CrossRef]
  19. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, J. Opt. Soc. Am. B 28, 28 (2011). [CrossRef]
  20. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, IEEE J. Quantum Electron. 29, 1824 (1993). [CrossRef]
  21. W. D. Heiss, J. Phys. A 37, 2455 (2004). [CrossRef]
  22. C. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998). [CrossRef]
  23. A. Ruschhaupt, F. Delgado, and J. G. Muga, J. Phys. A 38, L171 (2005). [CrossRef]
  24. A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Phys. Rev. Lett. 103, 093902 (2009). [CrossRef]
  25. G. Yoo, H.-S. Sim, and H. Schomerus, Phys. Rev. A 84, 063833 (2011). [CrossRef]
  26. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, Nat. Photonics 4, 182 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited