OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 16 — Aug. 15, 2014
  • pp: 4934–4937

One-way optical transmission in silicon grating-photonic crystal structures

Yanyu Zhang, Qiang Kan, and Guo Ping Wang  »View Author Affiliations

Optics Letters, Vol. 39, Issue 16, pp. 4934-4937 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (377 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One-way optical transmission through a composite structure of grating-photonic crystal (PC) is presented. This unidirectional transportation property originates from the diffraction of grating to change the direction of light incident into the PC from pseudobandgaps to passbands of the PC. Numerical simulation shows that a light beam in a certain range of frequencies can transmit the composite structure when it is incident from the grating interface but is completely reflected by the structure when it is incident from the PC interface, which is further verified experimentally. The present structure may provide another more compact way for designing on-chip optical diode-like integrated devices.

© 2014 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1950) Optical devices : Diffraction gratings
(230.5298) Optical devices : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: May 14, 2014
Revised Manuscript: July 2, 2014
Manuscript Accepted: July 15, 2014
Published: August 15, 2014

Yanyu Zhang, Qiang Kan, and Guo Ping Wang, "One-way optical transmission in silicon grating-photonic crystal structures," Opt. Lett. 39, 4934-4937 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, Nature 426, 264 (2003). [CrossRef]
  2. E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001). [CrossRef]
  3. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, Nat. Photonics 5, 758 (2011). [CrossRef]
  4. M. Levy, J. Opt. Soc. Am. B 22, 254 (2005). [CrossRef]
  5. T. R. Zaman, X. Guo, and R. J. Ram, Appl. Phys. Lett. 90, 023514 (2007). [CrossRef]
  6. M. Soljačić, C. Luo, J. D. Joannopoulos, and S. Fan, Opt. Lett. 28, 637 (2003). [CrossRef]
  7. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, Appl. Phys. Lett. 79, 314 (2001). [CrossRef]
  8. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, Science 335, 447 (2012). [CrossRef]
  9. Y. D. Xu, C. D. Gu, B. Hou, Y. Lai, J. S. Li, and H. Y. Chen, Nat. Commun. 4, 2561 (2013).
  10. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, Phys. Rev. Lett. 108, 213905 (2012). [CrossRef]
  11. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, Phys. Rev. Lett. 104, 253902 (2010). [CrossRef]
  12. Z. Yu and S. Fan, Nat. Photonics 3, 91 (2009). [CrossRef]
  13. Z. H. Zhu, K. Liu, W. Xu, Z. Luo, C. C. Guo, B. Yang, T. Ma, X. D. Yuan, and W. M. Ye, Opt. Lett. 37, 4008 (2012). [CrossRef]
  14. W. M. Ye, X. D. Yuan, and C. Zeng, Opt. Lett. 36, 2842 (2011). [CrossRef]
  15. C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 111111 (2007). [CrossRef]
  16. H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, Phys. Rev. A 82, 043803 (2010). [CrossRef]
  17. L. Feng, M. Ayache, J. Huang, Y. L. Xu, M. H. Lu, and Y. F. Chen, Science 333, 729 (2011). [CrossRef]
  18. E. Battal, T. A. Yogurt, and A. K. Okyay, Plasmonics 8, 509 (2013). [CrossRef]
  19. S. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, Opt. Lett. 35, 2597 (2010). [CrossRef]
  20. A. E. Serebryannikov, Phys. Rev. B 80, 155117 (2009). [CrossRef]
  21. C. C. Lu, X. Y. Hu, H. Yang, and Q. H. Gong, Opt. Lett. 36, 4668 (2011). [CrossRef]
  22. C. Wang, C. Z. Zhou, and Z. Y. Li, Opt. Express 19, 26948 (2011). [CrossRef]
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  24. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990). [CrossRef]
  25. X. F. Li, X. Ni, L. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited