OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 2 — Jan. 15, 2014
  • pp: 339–342

Direct method to control surface plasmon polaritons on metal surfaces

Yue-Gang Chen, Yu-Hui Chen, and Zhi-Yuan Li  »View Author Affiliations

Optics Letters, Vol. 39, Issue 2, pp. 339-342 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The manipulation of surface plasmon polaritons (SPPs) on metal surfaces is an important aspect in the design of ultra-compact integrated micro/nano optical systems. We present a direct method for the easy, yet accurate design of complicated groove patterns to control SPPs traveling on metal surfaces, using a surface electromagnetic wave holography method, based on the Huygens–Fresnel principle. SPPs are scattered by these deliberately and appropriately determined groove patterns and interfere with each other to form new paths with desire. Two devices are demonstrated, with predesignated functionalities fully implemented by the designed plasmonic holographic structures, according to the finite-difference time-domain simulations. The results strongly indicate that this direct method is effective, efficient, and user friendly in its application to control SPPs on metal surfaces.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: August 26, 2013
Revised Manuscript: December 2, 2013
Manuscript Accepted: December 9, 2013
Published: January 13, 2014

Yue-Gang Chen, Yu-Hui Chen, and Zhi-Yuan Li, "Direct method to control surface plasmon polaritons on metal surfaces," Opt. Lett. 39, 339-342 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. B. William, D. Alain, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martìn-Moreno, F. J. Garcìa-Vidal, and T. W. Ebbesen, Science 297, 820 (2002). [CrossRef]
  3. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2008).
  4. A. Otto, Physik 216, 398 (1968). [CrossRef]
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  6. J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, Phys. Rev. Lett. 109, 093904 (2012). [CrossRef]
  7. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, Nano Lett. 9, 327 (2009). [CrossRef]
  8. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, Nano Lett. 11, 4207 (2011). [CrossRef]
  9. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, Nano Lett. 7, 2784 (2007). [CrossRef]
  10. A. G. Curto and F. Javier Garcì a de Abajo, Nano Lett. 8, 2479 (2008). [CrossRef]
  11. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martìn-Moreno, F. J. Garcìa-Vidal, E. Devaux, and T. W. Ebbesen, Nano Lett. 9, 1278 (2009). [CrossRef]
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 95, 046802 (2005). [CrossRef]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Nature 440, 508 (2006). [CrossRef]
  14. Y. L. Fu, X. Y. Hu, C. C. Lu, S. Yue, H. Yang, and Q. H. Gong, Nano Lett. 12, 5784 (2012). [CrossRef]
  15. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov, Opt. Express 15, 16667 (2007). [CrossRef]
  16. L. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, Nano Lett. 5, 1399 (2005). [CrossRef]
  17. T. Tanemura, K. C. Balram, D. S. Ly-Gagnon, P. Wahl, J. S. White, M. L. Brongersma, and D. A. B. Miller, Nano Lett. 11, 2693 (2011). [CrossRef]
  18. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, Phys. Rev. Lett. 107, 126804 (2011). [CrossRef]
  19. L. Li, T. Li, S. M. Wang, and S. N. Zhu, Phys. Rev. Lett. 110, 046807 (2013). [CrossRef]
  20. L. Li, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Nano Lett. 11, 4357 (2011). [CrossRef]
  21. Y. H. Chen, J. X. Fu, and Z. Y. Li, Opt. Express 19, 23908 (2011). [CrossRef]
  22. Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, Light Sci. Appl. 1, e26 (2012).
  23. Y. H. Chen, M. Q. Zhang, L. Gan, X. Y. Wu, L. Sun, J. Liu, J. Wang, and Z. Y. Li, Opt. Express 21, 17558 (2013). [CrossRef]
  24. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, Nat. Commun. 3, 1278 (2012). [CrossRef]
  25. I. Dolev, I. Epstein, and A. Arie, Phys. Rev. Lett. 109, 203903 (2012). [CrossRef]
  26. B. H. Fong, J. S. Colburn, J. J. Ottusch, J. L. Visher, and D. F. Sievenpiper, IEEE Trans. Antennas Propag. 58, 3212 (2010). [CrossRef]
  27. D. F. Sievenpiper, J. Colburn, B. Fong, J. Ottusch, and J. Visher, Proc. IEEE Antennas Propagation Society Int. Symp. 1B, 256 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited