OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 8 — Apr. 15, 2014
  • pp: 2395–2398

Asymmetric Bessel modes

V. V. Kotlyar, A. A. Kovalev, and V. A. Soifer  »View Author Affiliations

Optics Letters, Vol. 39, Issue 8, pp. 2395-2398 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new, three-parameter family of diffraction-free asymmetric elegant Bessel modes (aB-modes) with an integer and fractional orbital angular momentum (OAM). The aB-modes are described by the nth-order Bessel function of the first kind with complex argument. The asymmetry degree of the nonparaxial aB-mode is shown to depend on a real parameter c0: when c=0, the aB-mode is identical to a conventional radially symmetric Bessel mode; with increasing c, the aB-mode starts to acquire a crescent form, getting stretched along the vertical axis and shifted along the horizontal axis for c1. On the horizontal axis, the aB-modes have a denumerable number of isolated intensity zeros that generate optical vortices with a unit topological charge of opposite sign on opposite sides of 0. At different values of the parameter c, the intensity zeros change their location on the horizontal axis, thus changing the beam’s OAM. An isolated intensity zero on the optical axis generates an optical vortex with topological charge n. The OAM per photon of an aB-mode depends near-linearly on c, being equal to (n+cI1(2c)/I0(2c)), where is the Planck constant and In(x) is a modified Bessel function.

© 2014 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(050.1960) Diffraction and gratings : Diffraction theory
(350.5500) Other areas of optics : Propagation
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

Original Manuscript: February 26, 2014
Manuscript Accepted: March 14, 2014
Published: April 9, 2014

V. V. Kotlyar, A. A. Kovalev, and V. A. Soifer, "Asymmetric Bessel modes," Opt. Lett. 39, 2395-2398 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Miller, Symmetry and Separation of Variables (Addison-Wesley, 1977).
  2. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987). [CrossRef]
  3. V. V. Kotlyar, S. N. Khonina, and V. A. Soifer, J. Mod. Opt. 42, 1231 (1995). [CrossRef]
  4. J. C. Gutierrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cedra, Opt. Lett. 25, 1493 (2000). [CrossRef]
  5. S. Chavez-Cedra, J. C. Gutierrez-Vega, and G. H. C. New, Opt. Lett. 26, 1803 (2001). [CrossRef]
  6. V. V. Kotlyar and A. A. Kovalev, J. Opt. Soc. Am. A 31, 274 (2014). [CrossRef]
  7. M. R. Dennis and J. D. Ring, Opt. Lett. 38, 3325 (2013). [CrossRef]
  8. A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series: Special Functions (Gordon & Breach, 1986).
  9. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, 1965).
  10. M. Abramovitz and I. A. Stegun, Handbook of Mathematical Functions, Applied Math Series (National Bureau of Standards, 1965).
  11. R. Bowman, N. Muller, X. Zambrana-Puyalto, O. Jedrkiewicz, P. Di Trapani, and M. J. Padgett, Eur. J. Phys. Special Topics 199, 159 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited