OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Xi-Cheng Zhang
  • Vol. 39, Iss. 8 — Apr. 15, 2014
  • pp: 2487–2490

Efficient generation of ultra-intense few-cycle radially polarized laser pulses

Sergio Carbajo, Eduardo Granados, Damian Schimpf, Alexander Sell, Kyung-Han Hong, Jeffrey Moses, and Franz X. Kärtner  »View Author Affiliations

Optics Letters, Vol. 39, Issue 8, pp. 2487-2490 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on efficient generation of millijoule-level, kilohertz-repetition-rate few-cycle laser pulses with radial polarization by combining a gas-filled hollow-waveguide compression technique with a suitable polarization mode converter. Peak power levels > 85 GW are routinely achieved, capable of reaching relativistic intensities > 10 19 W / cm 2 with carrier-envelope-phase control, by employing readily accessible ultrafast high-energy laser technology.

© 2014 Optical Society of America

OCIS Codes
(060.5060) Fiber optics and optical communications : Phase modulation
(140.3300) Lasers and laser optics : Laser beam shaping
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.5430) Physical optics : Polarization
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 4, 2014
Revised Manuscript: March 16, 2014
Manuscript Accepted: March 17, 2014
Published: April 14, 2014

Sergio Carbajo, Eduardo Granados, Damian Schimpf, Alexander Sell, Kyung-Han Hong, Jeffrey Moses, and Franz X. Kärtner, "Efficient generation of ultra-intense few-cycle radially polarized laser pulses," Opt. Lett. 39, 2487-2490 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. D. Perry and G. Mourou, Science 264, 917 (1994). [CrossRef]
  2. K. H. Hong, B. Hou, J. A. Nees, E. Power, and G. A. Mourou, Appl. Phys. B 81, 447 (2005). [CrossRef]
  3. O. Albert, H. Wang, D. Liu, Z. Chang, and G. Mourou, Opt. Lett. 25, 1125 (2000). [CrossRef]
  4. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003). [CrossRef]
  5. K. Youngworth and T. Brown, Opt. Express 7, 77 (2000). [CrossRef]
  6. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001). [CrossRef]
  7. D. P. Biss and T. G. Brown, Opt. Lett. 28, 923 (2003). [CrossRef]
  8. I. Moshe, S. Jackel, and A. Meir, Opt. Lett. 28, 807 (2003). [CrossRef]
  9. C. Hnatovsky, V. G. Shvedov, N. Shostka, A. V. Rode, and W. Krolikowski, Opt. Lett. 37, 226 (2012). [CrossRef]
  10. L. J. Wong and F. X. Kärtner, Opt. Express 18, 25035 (2010). [CrossRef]
  11. L. Cicchitelli, H. Hora, and R. Postle, Phys. Rev. A 41, 3727 (1990). [CrossRef]
  12. J. Rosenzweig, A. Murokh, and C. Pellegrini, Phys. Rev. Lett. 74, 2467 (1995). [CrossRef]
  13. W. D. Kimura, G. H. Kim, R. D. Romea, L. C. Steinhauer, I. V. Pogorelsky, K. P. Kusche, R. C. Fernow, X. Wang, and Y. Liu, Phys. Rev. Lett. 74, 546 (1995). [CrossRef]
  14. S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. MacLean, C. Tchervenkov, F. Lagare, M. Piche, and J. C. Kieffer, Appl. Phys. Lett. 101, 041105 (2012). [CrossRef]
  15. M. Bock, J. Brunne, A. Treffer, S. König, U. Wallrabe, and R. Grunwald, Opt. Lett. 38, 3642 (2013). [CrossRef]
  16. M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996). [CrossRef]
  17. E. Granados, L.-J. Chen, C.-J. Lai, K.-H. Hong, and F. X. Kärtner, Opt. Express 20, 9099 (2012). [CrossRef]
  18. A. A. Ishaaya, C. J. Hensley, B. Shim, S. Schrauth, K. W. Koch, and A. L. Gaeta, Opt. Express 17, 18630 (2009). [CrossRef]
  19. E. A. J. Marcatili and R. A. Schmeltzer, Bell Syst. Tech. J. 43, 1783 (1964). [CrossRef]
  20. G. Machavariani, Y. Lumer, I. Mosche, A. Meir, and S. Jackel, Opt. Lett. 32, 1468 (2007). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited