OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Analytical light reflectance models for overlapping illumination and collection area geometries

Andrew J. Gomes and Vadim Backman  »View Author Affiliations


Applied Optics, Vol. 51, Issue 33, pp. 8013-8021 (2012)
http://dx.doi.org/10.1364/AO.51.008013


View Full Text Article

Enhanced HTML    Acrobat PDF (526 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several biomedical applications, such as detection of dysplasia, require selective interrogation of superficial tissue structures less than a few hundred micrometers thick. Techniques and methods have been developed to limit the penetration depth of light in tissue, including the design of systems such as fiber-optic probes that have overlapping illumination and collection areas on the tissue surface. For such geometries, the diffusion approximation to the light-transport equation typically does not apply, and as a result there is no general model to extract tissue optical properties from reflectance measurements. In the current study, we employ Monte Carlo (MC) simulations to develop simple and compact analytical models for the light reflectance from these overlapping geometries. These models incorporate the size of the illumination and collection areas, the collection angle, the polarization of the incident light, and the optical properties of the sample. Moreover, these MC simulations use the Whittle–Matérn model to describe scattering from spatially continuous refractive index media such as tissue, which is more general than models based on the conventionally used Henyey–Greenstein model. We validated these models on tissue-simulating phantoms. The models developed herein will facilitate the extraction of optical properties and aid in the design of optical systems employing overlapping illumination and collection areas, including fiber-optic probes for in vivo tissue diagnosis.

© 2012 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 4, 2012
Revised Manuscript: September 24, 2012
Manuscript Accepted: October 26, 2012
Published: November 20, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Andrew J. Gomes and Vadim Backman, "Analytical light reflectance models for overlapping illumination and collection area geometries," Appl. Opt. 51, 8013-8021 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-51-33-8013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Amelink and H. J. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43, 3048–3054 (2004). [CrossRef]
  2. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291–4305 (2005). [CrossRef]
  3. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Topics Quantum Electron. 5, 1019–1026 (1999). [CrossRef]
  4. S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with polarized light,” Lasers Surg. Med. 26, 119–129 (2000). [CrossRef]
  5. Y. L. Kim, L. Yang, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, C. Kun, and V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Topics Quantum Electron. 9, 243–256 (2003). [CrossRef]
  6. S. P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997). [CrossRef]
  7. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43, 1308–1319 (2004). [CrossRef]
  8. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317–7328 (2007). [CrossRef]
  9. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30, 1159–1161 (2005). [CrossRef]
  10. M. P. Siegel, Y. L. Kim, H. K. Roy, R. K. Wali, and V. Backman, “Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy,” Appl. Opt. 45, 335–342 (2006). [CrossRef]
  11. M. C. Skala, G. M. Palmer, C. Zhu, Q. Liu, K. M. Vrotsos, C. L. Marshek-Stone, A. Gendron-Fitzpatrick, and N. Ramanujam, “Investigation of fiber-optic probe designs for optical spectroscopic diagnosis of epithelial pre-cancers,” Lasers Surg. Med. 34, 25–38 (2004). [CrossRef]
  12. K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, “Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology,” Opt. Express 5, 302–317 (1999). [CrossRef]
  13. A. M. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt. 10, 44017 (2005). [CrossRef]
  14. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47, 6046–6057 (2008). [CrossRef]
  15. C. Fang, D. Brokl, R. E. Brand, and Y. Liu, “Depth-selective fiber-optic probe for characterization of superficial tissue at a constant physical depth,” Biomed. Opt. Express 2, 838–849 (2011). [CrossRef]
  16. A. J. Gomes, H. K. Roy, V. Turzhitsky, Y. Kim, J. D. Rogers, S. Ruderman, V. Stoyneva, M. J. Goldberg, L. K. Bianchi, E. Yen, A. Kromine, M. Jameel, and V. Backman, “Rectal mucosal microvascular blood supply increase is associated with colonic neoplasia,” Clin. Cancer Res. 15, 3110–3117 (2009). [CrossRef]
  17. H. K. Roy, A. Gomes, V. Turzhitsky, M. J. Goldberg, J. Rogers, S. Ruderman, K. L. Young, A. Kromine, R. E. Brand, M. Jameel, P. Vakil, N. Hasabou, and V. Backman, “Spectroscopic microvascular blood detection from the endoscopically normal colonic mucosa: biomarker for neoplasia risk,” Gastroenterology 135, 1069–1078 (2008). [CrossRef]
  18. J. D. Rogers, I. R. Capoglu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett. 34, 1891–1893 (2009). [CrossRef]
  19. S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13, 064042 (2008). [CrossRef]
  20. S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17, 860–871 (2009). [CrossRef]
  21. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392–10405 (2005). [CrossRef]
  22. J. Ramella-Roman, S. Prahl, and S. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420–4438 (2005). [CrossRef]
  23. A. Radosevich, J. Rogers, V. Turzhitsky, N. Mutyal, J. Yi, H. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at subdiffusion length-scales,” IEEE J. Sel. Topics Quantum Electron. 18, 1313–1325 (2011). [CrossRef]
  24. A. Sassaroli and S. Fantini, “Comment on the modified Beer–Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004). [CrossRef]
  25. Y. Tsuchiya, “Photon path distribution and optical responses of turbid media: theoretical analysis based on the microscopic Beer–Lambert law,” Phys. Med. Biol. 46, 2067–2084 (2001). [CrossRef]
  26. A. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. Roy, and V. Backman, “In vivo measurement of the shape of the tissue refractive index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt 17, 059801 (2012). [CrossRef]
  27. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993). [CrossRef]
  28. A. J. Gomes, S. Ruderman, M. DelaCruz, R. K. Wali, H. K. Roy, and V. Backman, “In vivo measurement of the shape of the tissue-refractive-index correlation function and its application to detection of colorectal field carcinogenesis,” J. Biomed. Opt. 17, 047005 (2012). [CrossRef]
  29. M. Ahmad, S. Alali, A. Kim, M. F. Wood, M. Ikram, and I. A. Vitkin, “Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?” Biomed. Opt. Express 2, 3248–3258 (2011). [CrossRef]
  30. V. Sankaran, K. Schonenberger, J. T. Walsh, and D. J. Maitland, “Polarization discrimination of coherently propagating light in turbid media,” Appl. Opt. 38, 4252–4261 (1999). [CrossRef]
  31. Q. Wang, H. Yang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: development and implementation of a fiber optic-based system,” Opt. Express 16, 8685–8703 (2008). [CrossRef]
  32. J. C. Finlay and T. H. Foster, “Effect of pigment packaging on diffuse reflectance spectroscopy of samples containing red blood cells,” Opt. Lett. 29, 965–967 (2004). [CrossRef]
  33. R. L. van Veen, W. Verkruysse, and H. J. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett. 27, 246–248 (2002). [CrossRef]
  34. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, “Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties,” Appl. Opt. 36, 5655–5661 (1997). [CrossRef]
  35. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance,” J. Biomed. Opt. 7, 388–397 (2002). [CrossRef]
  36. L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13, 024011 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited