OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 4 — Mar. 29, 2012

A tritan Waldo would be easier to detect in the periphery than a red/green one: evidence from visual search

Rob N. Dalhaus, III and Karen L. Gunther  »View Author Affiliations

JOSA A, Vol. 29, Issue 2, pp. A298-A305 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a color naming task from 0° to 55° eccentricity, we found that red/green performance (n=10 subjects) declines around 40° eccentricity, 5° earlier than does tritan performance (main effect of color, p=0.009; eccentricity, p<0.001; interaction, p=0.005). In a feature visual search task (e.g., red target dot among green distractor dots; twelve 2.5° diameter dots; 0, 20, and 45° eccentricity; 12 subjects), performance was significantly more impaired for red/green than for tritan stimuli, especially in the periphery (main effect of color, p=0.007; eccentricity, p<0.001; interaction, p=0.003). This effect occurred even following a rod bleach. Our results are consistent with influences from both the retina (especially random rather than selective peripheral cone input to midget ganglion cells for red/green perception, and selective cone input to small bistratified cells for tritan perception) and the cortex (differential cortical magnification across the two chromatic axes).

© 2012 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision

ToC Category:
Mesopic and peripheral color vision

Original Manuscript: July 12, 2011
Revised Manuscript: December 14, 2011
Manuscript Accepted: December 15, 2011
Published: February 1, 2012

Virtual Issues
Vol. 7, Iss. 4 Virtual Journal for Biomedical Optics

Rob N. Dalhaus and Karen L. Gunther, "A tritan Waldo would be easier to detect in the periphery than a red/green one: evidence from visual search," J. Opt. Soc. Am. A 29, A298-A305 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Scheuer, “Color vision in the periphery: Sensitivity of red-green (R/G) color naming compared to the sensitivity of blue-yellow (B/Y) color naming,” Unpublished Senior Capstone Project (Wabash College, 2009).
  2. T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4), 26 (2009). [CrossRef]
  3. R. M. Boynton, W. Schafer, and M. E. Neun, “Hue-wavelength relation measured by color-naming method for three retinal locations,” Science 146, 666–668 (1964). [CrossRef]
  4. D. J. McKeefry, I. J. Murray, and N. R. Parry, “Perceived shifts in saturation and hue of chromatic stimuli in the near peripheral retina,” J. Opt. Soc. Am. A 24, 3168–3179 (2007). [CrossRef]
  5. I. J. Murray, N. R. A. Parry, and D. J. McKeefry, “Cone opponency in the near peripheral retina,” Vis. Neurosci. 23, 503–507 (2006).
  6. K. T. Mullen and F. A. Kingdom, “Differential distributions of red-green and blue-yellow cone opponency across the visual field,” Vis. Neurosci. 19, 109–118 (2002). [CrossRef]
  7. C. Vakrou, D. Whitaker, P. V. McGraw, and D. McKeefry, “Functional evidence for cone-specific connectivity in the human retina,” J. Physiol. 566, 93–102 (2005). [CrossRef]
  8. P. Lennie, W. Haake, and D. R. Williams, “The design of chromatically opponent receptive fields,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT, 1991), pp. 71–82.
  9. L. Diller, O. S. Packer, J. Verweij, M. J. McMahon, D. R. Williams, and D. M. Dacey, “L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina,” J. Neurosci. 24, 1079–1088 (2004). [CrossRef]
  10. J. D. Crook, M. B. Manookin, O. S. Packer, and D. M. Dacey, “Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina,” J. Neurosci. 31, 1762–1772 (2011). [CrossRef]
  11. K. T. Mullen and F. A. Kingdom, “Losses in peripheral colour sensitivity predicted from “hit and miss” post-receptoral cone connections,” Vision Res. 36, 1995–2000 (1996). [CrossRef]
  12. G. D. Field, “ARVO at VSS Talk Session: High-resolution receptive field measurements in primate retinal ganglion cells, and their implications for color vision,” presented at the Vision Sciences Society, Naples, Florida, 2011.
  13. R. C. Reid and R. M. Shapley, “Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus,” J. Neurosci. 22, 6158–6175 (2002).
  14. R. C. Reid and R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature 356, 716–718 (1992). [CrossRef]
  15. B. B. Lee, J. Kremers, and T. Yeh, “Receptive fields of primate retinal ganglion cells studied with a novel technique,” Vis. Neurosci. 15, 161–175 (1998). [CrossRef]
  16. B. B. Lee, R. M. Shapley, M. J. Hawken, and H. Sun, “Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings,” J. Opt. Soc. Am. A 29, A223–A232 (2012).
  17. D. M. Dacey, “Primate retina: Cell types, circuits and color opponency,” Prog. Retinal Eye Res. 18, 737–763 (1999). [CrossRef]
  18. P. Ahnelt and H. Kolb, “Horizontal cells and cone photoreceptors in human retina: A Golgi-electron microscopic study of spectral connectivity,” J. Comp. Neurol. 343, 406–427 (1994). [CrossRef]
  19. B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and primate vision,” Progr. Retinal Eye Res. 29, 622–639 (2010). [CrossRef]
  20. H. Kolb and L. Dekorver, “Midget ganglion cells of the parafovea of the human retina: A study by electron microscopy and serial section reconstructions,” J. Comp. Neurol. 303, 617–636(1991). [CrossRef]
  21. D. M. Dacey, “The mosaic of midget ganglion cells in the human retina,” J. Neurosci. 13, 5334–5355 (1993).
  22. A. K. Goodchild, K. K. Ghosh, and P. R. Martin, “Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus,” J. Comp. Neurol. 366, 55–75 (1996). [CrossRef]
  23. P. R. Jusuf, P. R. Martin, and U. Grunert, “Random wiring in the midget pathway of primate retina,” J. Neurosci. 26, 3908–3917 (2006). [CrossRef]
  24. F. M. deMonasterio and P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).
  25. P. R. Martin, B. B. Lee, A. J. White, S. G. Solomon, and L. Ruttiger, “Chromatic sensitivity of ganglion cells in the peripheral primate retina,” Nature 410, 933–936 (2001). [CrossRef]
  26. D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994). [CrossRef]
  27. D. M. Dacey, “Morphology of a small-field bistratified ganglion cell type in the macaque and human retina,” Vis. Neurosci. 10, 1081–1098 (1993). [CrossRef]
  28. J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009). [CrossRef]
  29. E. J. Chichilnisky and D. A. Baylor, “Receptive-field microstructure of blue-yellow ganglion cells in primate retina,” Nat. Neurosci. 2, 889–893 (1999). [CrossRef]
  30. D. J. Calkins, Y. Tsukamoto, and P. Sterling, “Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).
  31. G. D. Field, A. Sher, J. L. Gauthier, M. Greschner, J. Shlens, A. M. Litke, and E. J. Chichilnisky, “Spatial properties and functional organization of small bistratified ganglion cells in primate retina,” J. Neurosci. 27, 13261–13272 (2007). [CrossRef]
  32. K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vision Res. 31, 119–130 (1991). [CrossRef]
  33. A. B. Watson, “Estimation of local spatial scale,” J. Opt. Soc. Am. A 4, 1579–1582 (1987). [CrossRef]
  34. S. Vanni, L. Henriksson, M. Viikari, and A. C. James, “Retinotopic distribution of chromatic responses in human primary visual cortex,” Eur. J. Neurosci. 24, 1821–1831 (2006). [CrossRef]
  35. A. Panorgias, N. R. Parry, D. J. McKeefry, J. J. Kulikowski, and I. J. Murray, “Nasal-temporal differences in cone-opponency in the near peripheral retina,” Ophthalmic Physiolog. Opt. 29, 375–381 (2009). [CrossRef]
  36. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef]
  37. L. J. Croner and E. Kaplan, “Receptive fields of P and M ganglion cells across the primate retina,” Vision Res. 35, 7–24 (1995). [CrossRef]
  38. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497–523 (1990). [CrossRef]
  39. K. L. Gunther and K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vision Res. 42, 1367–1378 (2002). [CrossRef]
  40. H. E. Ives, “Studies in the photometry of lights of different colours—IV. The addition of luminosities of different colour,” Philos. Mag. 24, 845–853 (1912).
  41. K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vision Res. 43, 683–696 (2003). [CrossRef]
  42. B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vision Res. 37, 2813–2828 (1997). [CrossRef]
  43. G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009). [CrossRef]
  44. A. L. Nagy and J. A. Doyal, “Red-green color discrimination as a function of stimulus field size in peripheral vision,” J. Opt. Soc. Am. A 10, 1147–1156 (1993). [CrossRef]
  45. B. Stabell and U. Stabell, “Effects of rod activity on color perception with light adaptation,” J. Opt. Soc. Am. A 19, 1249–1258 (2002). [CrossRef]
  46. B. Stabell and U. Stabell, “Peripheral colour vision: Effects of rod intrusion at different eccentricities,” Vision Res. 36, 3407–3414 (1996). [CrossRef]
  47. S. L. Buck, R. F. Knight, and J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vision Res. 40, 3333–3344 (2000). [CrossRef]
  48. J. L. Nerger, V. J. Volbrecht, C. J. Ayde, and S. M. Imhoff, “Effect of the S-cone mosaic and rods on red/green equilibria,” J. Opt. Soc. Am. A 15, 2816–2826 (1998). [CrossRef]
  49. S. A. Hagstrom, J. Neitz, and M. Neitz, “Variations in cone populations for red-green color vision examined by analysis of mRNA,” Neurorep. 9, 1963–1967 (1998). [CrossRef]
  50. D. J. Calkins, “Seeing with S cones,” Progr. Retinal Eye Res. 20, 255–287 (2001). [CrossRef]
  51. A. Vassilev, I. Ivanov, M. B. Zlatkova, and R. S. Anderson, “Human S-cone vision: Relationship between perceptive field and ganglion cell dendritic field,” J. Vis. 5(10), 6 (2005). [CrossRef]
  52. B. Stabell and U. Stabell, “Rod and cone contribution to peripheral colour vision,” Vision Res. 16, 1099–1104 (1976). [CrossRef]
  53. A. Valberg, B. B. Lee, and D. A. Tigwell, “Neurones with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus,” Vision Res. 26, 1061–1064 (1986). [CrossRef]
  54. F. M. deMonasterio, P. Gouras, and D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 197–216 (1975).
  55. J. Carroll, J. Neitz, and M. Neitz, “Estimates of L∶M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8), 1(2002). [CrossRef]
  56. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975). [CrossRef]
  57. J. R. Newton and R. T. Eskew, “Chromatic detection and discrimination in the periphery: A postreceptoral loss of color sensitivity,” Vis. Neurosci. 20, 511–521 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited