OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

A combination of concave/convex surfaces for field-enhancement optimization: the indented nanocone

Aitzol García-Etxarri, Peter Apell, Mikael Käll, and Javier Aizpurua  »View Author Affiliations


Optics Express, Vol. 20, Issue 23, pp. 25201-25212 (2012)
http://dx.doi.org/10.1364/OE.20.025201


View Full Text Article

Enhanced HTML    Acrobat PDF (3891 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a design strategy to maximize the Near Field (NF) enhancement near plasmonic antennas. We start by identifying and studying the basic electromagnetic effects that contribute to the electric near field enhancement. Next, we show how the concatenation of a convex and a concave surface allows merging all the effects on a single, continuous nanoantenna. As an example of this NF maximization strategy, we engineer a nanostructure, the indented nanocone. This structure, combines all the studied NF maximization effects with a synergistic boost provided by a Fano-like interference effect activated by the presence of the concave surface. As a result, the antenna exhibits a NF amplitude enhancement of ∼ 800, which transforms into ∼1600 when coupled to a perfect metallic surface. This strong enhancement makes the proposed structure a robust candidate to be used in field enhancement based technologies. Further elaborations of the concept may produce even larger and more effective enhancements.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6340) Spectroscopy : Spectroscopy, infrared
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

History
Original Manuscript: May 31, 2012
Revised Manuscript: October 5, 2012
Manuscript Accepted: October 6, 2012
Published: October 22, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Aitzol García-Etxarri, Peter Apell, Mikael Käll, and Javier Aizpurua, "A combination of concave/convex surfaces for field-enhancement optimization: the indented nanocone," Opt. Express 20, 25201-25212 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-23-25201


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny and N. Van Hulst, “Antennas for light,” Nature Photon.5, 83–90 (2011). [CrossRef]
  2. H. Xu, E. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of Single hemoglobin molecules by surface enhanced raman scattering,” Phys. Rev. Lett.83, 4357–4360 (1999). [CrossRef]
  3. F. Neubrech, A. Pucci, T. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101, 2–5 (2008). [CrossRef]
  4. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett.5, 2335 (2005). [CrossRef] [PubMed]
  5. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett.8, 3893 (2008). [CrossRef] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat.9, 205–213 (2010). [CrossRef]
  7. A. C. Atre, A. García-Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt.14, 024008 (2012). [CrossRef]
  8. Z. Liu, W. Hou, P. Pavaskar, M. Aykol, and S. B. Cronin, “Plasmon resonant enhancement of carbon monoxide catalysis,” Nano Lett.11, 1111–1116 (2011). [CrossRef] [PubMed]
  9. H. Xu, J. Aizpurua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E62, 4318–4324 (2000). [CrossRef]
  10. P. Nordlander and C. Oubre, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4, 899–903 (2004). [CrossRef]
  11. K. Li, M. Stockman, and D. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett.91, 227402 (2003). [CrossRef] [PubMed]
  12. M. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004). [CrossRef] [PubMed]
  13. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic dimple lens for nanoscale focusing of light,” Nano Lett.9, 34473452, (2009). [CrossRef] [PubMed]
  14. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nature Photon.4, 83–91 (2010). [CrossRef]
  15. F. J. García, De Abajo, and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” Phys. Rev. B65, 115418 (2002). [CrossRef]
  16. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. Lett.80, 5180–5183 (1998). [CrossRef]
  17. C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles” (Wiley, New York, 1983).
  18. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987). [CrossRef]
  19. Y. Kornyushin, “Plasma oscillations in porous samples,” Sci. Sinter.36, 43–50 (2004). [CrossRef]
  20. H. Xu, E. J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Hook, and M. Kall, “Interparticle coupling effects in surface-enhanced Raman scattering,” Proc. SPIE4258, 35–42 (2001). [CrossRef]
  21. I. Romero, J. Aizpurua, G. W. Bryant, F. J. García, and De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express14, 9988–99 (2006). [CrossRef] [PubMed]
  22. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302, 419 (2003). [CrossRef] [PubMed]
  23. J Aizpurua, F. J. Garcá de Abajo, and G. W. Bryant, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett.8, 631 (2008). [CrossRef] [PubMed]
  24. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11, 1201 (2011). [CrossRef] [PubMed]
  25. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, and M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett.11, 2606 (2011). [CrossRef] [PubMed]
  26. C. Forestiere, A. J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S. Y. Lee, B. M. Reinhard, and L. Dal Negro, “Genetically engineered plasmonic nanoarrays,” Nano Lett.12, 2037–2044 (2012). [CrossRef] [PubMed]
  27. T. Feichtner, O. Selig, M. Kiunke, and B. Hecht, “Evolutionary optimization of optical antennas,” Phys. Rev. Lett.109, 127701 (2012). [CrossRef] [PubMed]
  28. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single ”bowtie” nanoantennas resonant in the visible,” Nano Lett.4, 957–961 (2004). [CrossRef]
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 43704379 (1972). [CrossRef]
  30. J. Aizpurua, S. P. Apell, and R. Berndt, “Role of the tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000). [CrossRef]
  31. F. J. García de Abajo and J. Aizpurua, “Numerical simulation of electron energy loss near inhomogeneous dielectrics,” Phys. Rev. B56, 15873–15884 (1997). [CrossRef]
  32. J. Aizpurua, A. Howie, and F. J. Garcá de Abajo, “Valence-electron energy loss near edges, truncated slabs, and junctions,” Phys. Rev. B60, 11149–11162 (1999). [CrossRef]
  33. S. P. Apell, P. M. Echenique, and R. H. Ritchie, “Sum rules for surface plasmon frequencies,” Ultramicroscopy65, 53–60 (1996). [CrossRef]
  34. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008). [CrossRef] [PubMed]
  35. B. Lukýanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. Tow Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nature Mater.9, 707–715 (2010). [CrossRef]
  36. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Optics Expr.15, 8550–8565 (2007). [CrossRef]
  37. S. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances,” Nano Lett.11, 39273934 (2011). [CrossRef] [PubMed]
  38. F. Neubrech, A. García-Etxarri, D. Weber, J Bochterle, H. Shen, M. Lamy, De La Chapelle, G. W. Bryant, J. Aizpurua, and A. Pucci, “Defect-induced activation of symmetry forbidden infrared resonances in individual metallic nanorods,” Appl. Phys. Lett.96, 213111 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited