OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Quantum dot selective area intermixing for broadband light sources

K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26950-26957 (2012)
http://dx.doi.org/10.1364/OE.20.026950


View Full Text Article

Enhanced HTML    Acrobat PDF (1043 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report a comparison of different capping materials on the intermixing of modulation p-doped InAs/In(Ga)As quantum dots (QD). QD materials with different caps are shown to exhibit significant difference in their optical properties during the annealing process. The selective area intermixing technique is demonstrated to laterally integrate two and three different QD light emitting devices with a single electrical contact. A spectral bandwidth of 240nm centered at 1188nm is achieved in a device with two sections. By calculating the point spread function for the obtained emission spectra, and applying the Rayleigh criteria for resolution, an axial resolution of 3.5μm is deduced. A three section device realizes a spectral bandwidth of 310nm centered at 1145nm. This corresponds to an axial resolution of 2.4μm. Such a small predicted axial resolution is highly desirable in optical coherence tomography system and other coherence-based systems applications.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(250.0250) Optoelectronics : Optoelectronics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: September 24, 2012
Revised Manuscript: November 8, 2012
Manuscript Accepted: November 8, 2012
Published: November 15, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
K. J. Zhou, Q. Jiang, Z. Y. Zhang, S. M. Chen, H. Y. Liu, Z. H. Lu, K. Kennedy, S. J. Matcher, and R. A. Hogg, "Quantum dot selective area intermixing for broadband light sources," Opt. Express 20, 26950-26957 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-24-26950


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing,” J. Lightwave Technol.16(9), 1546–1559 (1998). [CrossRef]
  2. W. Burns, C. Lin, and R. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol.1(1), 98–105 (1983). [CrossRef]
  3. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999). [CrossRef] [PubMed]
  4. C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt.41(25), 5256–5262 (2002). [CrossRef] [PubMed]
  5. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, “High-performance quantum-dot superluminescent diodes,” IEEE Photon. Technol. Lett.16(1), 27–29 (2004). [CrossRef]
  6. Z. Y. Zhang, R. A. Hogg, X. Q. Lv, and Z. G. Wang, “Self-assembled quantum-dot superluminescent light-emitting diodes,” Adv. Opt. Photon.2(2), 201–228 (2010). [CrossRef]
  7. L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, “Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers,” Electron. Lett.41(1), 41–43 (2005). [CrossRef]
  8. S. M. Chen, K. J. Zhou, Z. Y. Zhang, D. T. D. Childs, M. Hugues, A. J. Ramsay, and R. A. Hogg, “Ultra-broad spontaneous emission and modal gain spectrum from a hybrid quantum well/quantum dot laser structure,” Appl. Phys. Lett.100(4), 041118 (2012). [CrossRef]
  9. X. Q. Lv, N. Liu, P. Jin, and Z. G. Wang, “Broadband emitting superluminescent diodes with InAs quantum dots in AlGaAs matrix,” IEEE Photon. Technol. Lett.20(20), 1742–1744 (2008). [CrossRef]
  10. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3μm quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett.19(7), 501–503 (2007). [CrossRef]
  11. Q. Jiang, Z. Y. Zhang, M. Hopkinson, and R. A. Hogg, “High performance intermixed p-doped quantum dot superluminescent diodes at 1.2μm,” Electron. Lett.46(4), 295–296 (2010). [CrossRef]
  12. Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, “Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process,” Opt. Lett.33(11), 1210–1212 (2008). [CrossRef] [PubMed]
  13. Z. Y. Zhang, Q. Jiang, M. Hopkinson, and R. A. Hogg, “Effects of intermixing on modulation p-doped quantum dot superluminescent light emitting diodes,” Opt. Express18(7), 7055–7063 (2010). [CrossRef] [PubMed]
  14. J. H. Marsh, “Quantum well intermixing,” Semicond. Sci. Technol.8(6), 1136–1155 (1993). [CrossRef]
  15. C. L. Walker, A. C. Bryce, and J. H. Marsh, “Improved catastrophic optical damage level from laser with nonabsorbing mirrors,” IEEE Photon. Technol. Lett.14(10), 1394–1396 (2002). [CrossRef]
  16. H. S. Djie, Y. Wang, D. Negro, and B. S. Ooi, “Postgrowth band gap trimming of InAs/InAlGaAs quantum-dash laser,” Appl. Phys. Lett.90(3), 031101 (2007). [CrossRef]
  17. A.-R. Bellancourt, Y. Barbarin, D. J. H. C. Maas, M. Shafiei, M. Hoffmann, M. Golling, T. Südmeyer, and U. Keller, “Low saturation fluence antiresonant quantum dot SESAMs for MIXSEL integration,” Opt. Express17(12), 9704–9711 (2009). [CrossRef] [PubMed]
  18. Z. Y. Zhang, A. E. H. Oehler, B. Resan, S. Kurmulis, K. J. Zhou, Q. Wang, M. Mangold, T. Suedmeyer, U. Keller, K. J. Weingarten, and R. A. Hogg, “1.55μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser, ” Sci. Rep. 2, Article Nr. 477 (2012).
  19. X. C. Wang, S. J. Xu, S. J. Chua, Z. H. Zhang, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Widely tunable intersubband energy spacing of self-assembled InAs/GaAs quantum dots due to interface intermixing,” J. Appl. Phys.86(5), 2687–2690 (1999). [CrossRef]
  20. Z. Y. Zhang, Q. Jiang, and R. A. Hogg, “Tunable interband and intersubband transitions in modulation C-doped InGaAs/GaAs quantum dot lasers by postgrowth annealing process,” Appl. Phys. Lett.93(7), 071111 (2008). [CrossRef]
  21. L. Fu, P. Lever, H. H. Tan, C. Jagadish, P. Reece, and M. Gal, “Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide,” Appl. Phys. Lett.82(16), 2613–2615 (2003). [CrossRef]
  22. R. M. Cohen, G. Li, C. Jagadish, P. T. Burke, and M. Gal, “Native defect engineering of interdiffusion using thermally grown oxides of GaAs,” Appl. Phys. Lett.73(6), 803–805 (1998). [CrossRef]
  23. A. Pepin, C. Vieu, M. Schneider, H. Launois, and Y. Nissim, “Evidence of stress dependence in SiO2/Si3N4 encapsulation-based layer disordering of GaAs/AlGaAs quantum well heterostructures,” J. Vac. Sci. Technol. B15(1), 142–153 (1997). [CrossRef]
  24. S. Alexey, “Properties of pure aluminum, ” in Handbook of Aluminum (CRC Press, 2003), Chap. 2.
  25. B. S. Ooi, K. McIlvaney, M. W. Street, A. S. Helmy, S. G. Ayling, A. C. Bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum-well intermixing in GaAs-AlGaAs structures using impurity-free vacancy diffusion,” IEEE J. Quantum Electron.33(10), 1784–1793 (1997). [CrossRef]
  26. S. Grosse, J. H. H. Sandmann, G. von Plessen, J. Feldmann, H. Lipsanen, M. Sopanen, J. Tulkki, and J. Ahopelto, “Carrier relaxation dynamics in quantum dots: scattering mechanisms and state-filling effects,” Phys. Rev. B55(7), 4473–4476 (1997). [CrossRef]
  27. Z. Y. Zhang, Q. Jiang, I. J. Luxmoore, and R. A. Hogg, “A p-type-doped quantum dot superluminescent LED with broadband and flat-topped emission spectra obtained by post-growth intermixing under a GaAs proximity cap,” Nanotechnology20(5), 055204 (2009). [CrossRef] [PubMed]
  28. Y. Zhang, M. Sato, and N. Tanno, “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement,” Opt. Commun.192(3-6), 183–192 (2001). [CrossRef]
  29. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett.25(2), 114–116 (2000). [CrossRef] [PubMed]
  30. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited