OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 53, Iss. 14 — May. 10, 2014
  • pp: 3004–3009

Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon

Guoliang Deng, Guoying Feng, Kui Liu, and Shouhuan Zhou  »View Author Affiliations

Applied Optics, Vol. 53, Issue 14, pp. 3004-3009 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (684 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The temperature dependence (from 25°C to 350°C) of laser-induced micro/nanostructures for multiple linearly polarized femtosecond laser pulse (pulse duration τ=35fs, wavelength λ=800nm) irradiation of silicon in air is studied experimentally. Distinct micro/nanostructures are fabricated at elevated temperature. Low spatial frequency, laser-induced periodic ripple structures (LSFL), which are perpendicular to the polarization of the laser beam, are formed at all temperatures. Micrometer-size grooves, which are oriented perpendicular to the LSFL ripples, have been observed in the central part of the irradiated area above 150°C. The threshold to fabricate the LSFL ripples goes from 1.65 to 2kJ/m2 while the temperature of the substrate increases from 25°C to 350°C. The possible mechanism of the temperature dependence of the micro/nanostructure generation is also discussed. These results demonstrate that temperature is an important parameter to be tuned to tailor the micro/nanostructure fabrication.

© 2014 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(160.6000) Materials : Semiconductor materials
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 6, 2013
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 1, 2014
Published: May 5, 2014

Guoliang Deng, Guoying Feng, Kui Liu, and Shouhuan Zhou, "Temperature dependence of laser-induced micro/nanostructures for femtosecond laser irradiation of silicon," Appl. Opt. 53, 3004-3009 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Bonse, A. Rosenfeld, and J. Kruger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009). [CrossRef]
  2. M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008). [CrossRef]
  3. T. Sarnet, G. Kerrien, N. Yaakoubi, A. Bosseboeuf, E. Dufour-Gergam, D. Débarre, J. Boulmer, K. Kakushima, C. Laviron, M. Hernandez, J. Venturini, and T. Bourouina, “Laser doping for microelectronics and microtechnology,” Appl. Surf. Sci. 247, 537–544 (2005). [CrossRef]
  4. N. C. Kerr, S. E. Clark, and D. C. Emmony, “High resolution imaging studies into the formation of laser-induced periodic surface structures,” Appl. Opt. 28, 3718–3724 (1989). [CrossRef]
  5. Y. Peng, D. Zhang, H. Chen, Y. Wen, S. Luo, L. Chen, K. Chen, and Y. Zhu, “Differences in the evolution of surface-microstructured silicon fabricated by femtosecond laser pulses with different wavelength,” Appl. Opt. 51, 635–639 (2012). [CrossRef]
  6. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998). [CrossRef]
  7. M. Shen, J. E. Carey, C. H. Crouch, M. Kandyla, H. A. Stone, and E. Mazur, “High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water,” Nano Lett. 8, 2087–2091 (2008). [CrossRef]
  8. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009). [CrossRef]
  9. J. Bonse and J. Kruger, “Pulse number dependence of laser-induced periodic surface structures for femtosecond laser irradiation of silicon,” J. Appl. Phys. 108, 034903 (2010). [CrossRef]
  10. J. Bonse, M. Munz, and H. Sturm, “Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses,” J. Appl. Phys. 97, 013538 (2005). [CrossRef]
  11. J. Z. P. Skolski, G. R. B. E. Römer, J. V. Obona, V. Ocelik, A. J. Huis in ’t Veld, and J. T. M. De Hosson, “Laser-induced periodic surface structures: fingerprints of light localization,” Phys. Rev. B 85, 075320 (2012). [CrossRef]
  12. T. J. Y. Derrien, R. Torres, T. Sarnet, M. Sentis, and T. E. Itina, “Formation of femtosecond laser induced surface structures on silicon: insights from numerical modeling and single pulse experiments,” Appl. Surf. Sci. 258, 9487–9490 (2012). [CrossRef]
  13. O. Varlamova, F. Costache, M. Ratzke, and J. Reif, “Control parameters in pattern formation upon femtosecond laser ablation,” Appl. Surf. Sci. 253, 7932–7936 (2007). [CrossRef]
  14. K. Liu, G. Feng, G. Deng, and W. Li, “Difference in microstructures induced by femtosecond laser scanning on silicon surface at different temperature,” Chin. J. Lasers 39, 56–60 (2012).
  15. B. K. Sun, X. Zhang, and C. P. Grigoropoulos, “Spectral optical functions of silicon in the range of 1.13–4.96  eV at elevated temperatures,” Int. J. Heat Mass Trans. 40, 1591–1600 (1997). [CrossRef]
  16. K. P. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58, 2924–2926 (1991). [CrossRef]
  17. G. E. Jellison and F. A. Modine, “Optical functions of silicon between 1.7 and 4.7  eV at elevated temperatures,” Phys. Rev. B 27, 7466–7472 (1983). [CrossRef]
  18. C. Wang, H. Huo, M. Johnson, M. Shen, and E. Mazur, “The thresholds of surface nano-/micro-morphology modifications with femtosecond laser pulse irradiations,” Nanotechnology 21, 075304 (2010). [CrossRef]
  19. K. Sokolowski-Tinten and D. von der Linde, “Generation of dense electron-hole plasmas in silicon,” Phys. Rev. B 61, 2643–2650 (2000). [CrossRef]
  20. S. Krishnamurthy, Z. G. Yu, L. P. Gonzalez, and S. Guha, “Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP,” J. Appl. Phys. 109, 033102 (2011). [CrossRef]
  21. J. Thorstensen and S. E. Foss, “Temperature dependent ablation threshold in silicon using ultrashort laser pulses,” J. Appl. Phys. 112, 103514 (2012). [CrossRef]
  22. T. J.-Y. Derrien, T. E. Itina, R. Torres, T. Sarnet, and M. Sentis, “Possible surface plasmon polariton excitation under femtosecond laser irradiation of silicon,” J. Appl. Phys. 114, 083104 (2013). [CrossRef]
  23. H. P. Chiang, C. W. Chen, J. J. Wu, H. L. Li, T. Y. Lin, E. J. Sánchez, and P. T. Leung, “Effects of temperature on the surface plasmon resonance at a metal–semiconductor interface,” Thin Solid Films 515, 6953–6961 (2007). [CrossRef]
  24. H. P. Chiang, Y. C. Wang, P. T. Leung, and W. S. Tse, “A theoretical model for the temperature-dependent sensitivity of the optical sensor based on surface plasmon resonance,” Opt. Commun. 188, 283–289 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited