OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Grover Swartzlander
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 939–947

Power analysis of multilayer structures composed of conventional materials and bi-anisotropic metamaterial slabs

Ugur Cem Hasar, Musa Bute, Joaquim J. Barroso, Cumali Sabah, Yunus Kaya, and Mehmet Ertugrul  »View Author Affiliations

JOSA B, Vol. 31, Issue 5, pp. 939-947 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (843 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we analyze wave propagation properties (transmitted, reflected, and absorbed powers) of composite multilayer structures consisting of bi-anisotropic metamaterial (MM) slabs and conventional isotropic materials. We also separately investigate the propagation properties of bi-anisotropic MM slabs and conventional materials to better interpret the results. We consider two different bi-anisotropic MM slab structures composed of only split-ring-resonators (SRRs) and composing SRRs and a rod. In the analysis, we apply the well-known transfer matrix method to obtain transmitted, reflected, and absorbed powers of the composite structures. From the analysis, we note the following three important results. First, while the transmitted powers from forward and backward directions of the multilayer structure are identical (reciprocal feature), reflected (and absorbed) powers from forward and backward directions of the multilayer structure are different. This difference arises from reflection asymmetric nature of the bi-anisotropic MM slabs. Second, whereas the conventional material loss influences propagation characteristics aside resonance frequencies of bi-anisotropic MM slabs, bi-anisotropic MM loss worsens propagation properties of the multilayer structure at resonance frequencies of these slabs. Third, variations in (or determination of) electromagnetic properties of low-loss thin conventional materials in between two bi-anisotropic MM slabs can be realized at frequencies in which conventional materials demonstrate thickness-resonance effect.

© 2014 Optical Society of America

OCIS Codes
(290.3030) Scattering : Index measurements
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: January 23, 2014
Revised Manuscript: February 28, 2014
Manuscript Accepted: March 1, 2014
Published: April 2, 2014

Ugur Cem Hasar, Musa Bute, Joaquim J. Barroso, Cumali Sabah, Yunus Kaya, and Mehmet Ertugrul, "Power analysis of multilayer structures composed of conventional materials and bi-anisotropic metamaterial slabs," J. Opt. Soc. Am. B 31, 939-947 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef]
  4. J. B. Pendry, D. Schuring, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  5. K. Aydin, Z. Li, M. Hudlicka, S. A. Tretyakov, and E. Ozbay, “Transmission characteristics of bianisotropic metamaterials based on omega shaped metallic inclusions,” New J. Phys. 9, 326 (2007). [CrossRef]
  6. C. Sabah, “Multiband planar metamaterials,” Microw. Opt. Technol. Lett. 53, 2255–2258 (2011). [CrossRef]
  7. C. Helgert, C. Rockstuhl, C. Etrich, C. Menzel, E.-B. Kley, A. Tunnermann, F. Lederer, and T. Pertsch, “Effective properties of amorphous metamaterials,” Phys. Rev. B 79, 233107 (2009). [CrossRef]
  8. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90, 011112 (2007). [CrossRef]
  9. H. Nemec, P. Kuzel, F. Kadlec, C. Kadlec, R. Yahiaoui, and P. Mounaix, “Tunable terahertz metamaterials with negative permeability,” Phys. Rev. B 79, 241108(R) (2009).
  10. L. Chen, Z. Lei, R. Yang, X. Shi, and J. Zhang, “Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures,” Prog. Electromagn. Res. 29, 79–93 (2013). [CrossRef]
  11. D. R. Smith and J. B. Pendry, “Homogenization of metamaterials by field averaging,” J. Opt. Soc. Am. B 23, 391–403 (2006). [CrossRef]
  12. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004). [CrossRef]
  13. H. Chen, L. Ran, J. Haungfu, T. M. Grzegorczyk, and J. A. Kong, “Equivalent circuit model for left-handed metamaterials,” J. Appl. Phys. 100, 24915 (2006). [CrossRef]
  14. D. S. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002). [CrossRef]
  15. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E 71, 036617 (2005). [CrossRef]
  16. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016608 (2004). [CrossRef]
  17. R. Marques, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B 65, 144440 (2002). [CrossRef]
  18. T. M. Grzegorczyk, X. Chen, J. Pacheco, J. Chen, B.-I. Wu, and J. A. Kong, “Reflection coefficients and Goos–Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials,” Prog. Electromagn. Res. 51, 83–113 (2005). [CrossRef]
  19. X. Chen, T. M. Grzegorczyk, and J. A. Kong, “Optimization approach to the retrieval of the constitutive parameters of a slab of general bianisotropic medium,” Prog. Electromagn. Res. 60, 1–18 (2006). [CrossRef]
  20. Z. Li, K. Aydin, and E. Ozbay, “Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients,” Phys. Rev. E 79, 026610 (2009). [CrossRef]
  21. Z.-G. Dong, S.-Y. Lei, Q. Li, M.-X. Xu, H. Liu, T. Li, F. M. Wang, and S. N. Zhu, “Non-left-handed transmission and bianisotropic effect in a π-shaped metallic metamaterial,” Phys. Rev. B 75, 075117 (2007). [CrossRef]
  22. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29, 2623–2625 (2004). [CrossRef]
  23. X. Chen, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Phys. Rev. E 71, 046610 (2005). [CrossRef]
  24. U. C. Hasar and J. J. Barroso, “Retrieval approach for determination of forward and backward wave impedances of bianisotropic metamaterials,” Prog. Electromagn. Res. 112, 109–124 (2011).
  25. O. Luukkonen, S. I. Maslovski, and S. A. Tretyakov, “A stepwise Nicolson–Ross–Weir-based material parameter extraction method,” IEEE Antennas Wirel. Propag. Lett. 10, 1295–1298 (2011). [CrossRef]
  26. U. C. Hasar, J. J. Barroso, C. Sabah, Y. Kaya, and M. Ertugrul, “Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials,” J. Opt. Soc. Am. B 30, 1058–1068 (2013). [CrossRef]
  27. C. S. C. M. Rao, S. D. Gupta, and G. S. Agarwal, “Study of asymmetric multilayered structures by means of nonreciprocity in phases,” J. Opt. B 6, 555–562 (2004). [CrossRef]
  28. A. H. Gevorgyan, “Nonreciprocal waves in absorbing multilayer systems,” Tech. Phys. Lett. 29, 819–823 (2003). [CrossRef]
  29. U. C. Hasar, Y. Kaya, M. Bute, J. J. Barroso, and M. Ertugrul, “Microwave method for reference-plane-invariant and thickness-independent permittivity determination of liquid materials,” Rev. Sci. Instrum. 85, 014705 (2014). [CrossRef]
  30. U. C. Hasar and A. Cansiz, “Simultaneous complex permittivity and thickness evaluation of liquid materials from scattering parameter measurements,” Microw. Opt. Technol. Lett. 52, 75–78 (2010). [CrossRef]
  31. U. C. Hasar, C. R. Westgate, and M. Ertgurul, “Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements,” IEEE Microw. Wirel. Compon. Lett. 19, 419–421 (2009). [CrossRef]
  32. U. C. Hasar, “A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials,” IEEE Trans. Microw. Theory Tech. 56, 2129–2135 (2008). [CrossRef]
  33. V. Tuz, M. Vidil, and S. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in vicinity of ferromagnetic resonance,” J. Opt. 12, 095102 (2010). [CrossRef]
  34. T. J. Fal and R. E. Camley, “Non-reciprocal devices using attenuated total reflection and thin film magnetic layered structures,” J. Appl. Phys. 110, 053912 (2011). [CrossRef]
  35. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004). [CrossRef]
  36. S. A. Tretyakov and A. A. Sochava, “Novel uniaxial bianisotropoic materials: reflection and transmission in planar structures,” Prog. Electromagn. Res. 9, 157–179 (1994).
  37. M. Norgren and S. He, “General scheme for electromagnetic reflection and transmission for composite structures of complex materials,” IEE Proc. Microw. Antennas Propag. 142, 52–56 (1995). [CrossRef]
  38. D. Y. Khaliullin and S. A. Tretyakov, “Reflection and transmission coefficients for thin bianisotropic layers,” IEE Proc. Microw. Antennas Propag. 145, 163–168 (1998). [CrossRef]
  39. S. Rikte, G. Kristensson, and M. Andersson, “Propagation in bianisotropic media—reflection and transmission,” IEE Proc. Microw. Antennas Propag. 148, 29–36 (2001). [CrossRef]
  40. C. Sabah, H. T. Tastan, F. Dincer, K. Delihacioglu, M. Karaaslan, and E. Unal, “Transmission tunelling through the multilayer double-negative and double-positive slabs,” Prog. Electromagn. Res. 138, 293–306 (2013). [CrossRef]
  41. C. Sabah and S. Uckun, “Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters,” Prog. Electromagn. Res. 91, 349–364 (2009). [CrossRef]
  42. C. Sabah, “Effects of loss factor on plane wave propagation through a left-handed material slab,” Acta Phys. Pol., A 113, 1589–1597 (2008).
  43. L. Liu, C. Hu, Z. Zhao, and X. Luo, “Multi-passband tunnelling effect in multilayered epsilon near-zero metamaterials,” Opt. Express 17, 12183–12188 (2009). [CrossRef]
  44. M. A. Antoniades and G. V. Eleftheriades, “Compact linear lead/lag metamaterial phase shifters for broadband applications,” IEEE Antennas Wirel. Propag. Lett. 2, 103–106 (2003). [CrossRef]
  45. U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, “The effect of loss silicon and fabrication tolerance on spectral properties of porous silicon Fabry–Perot cavities in sensing applications,” Opt. Express 20, 22208–22223 (2012). [CrossRef]
  46. F.-J. Hsieh and W.-C. Wang, “Full extraction methods to retrieve effective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models,” J. Appl. Phys. 112, 064907 (2012). [CrossRef]
  47. T. Karacali, U. C. Hasar, I. Y. Ozbek, E. A. Oral, and H. Efeoglu, “Novel design of porous silicon based sensor for reliable and feasible chemical gas vapor detection,” J. Lightwave Technol. 31, 295–305 (2013). [CrossRef]
  48. O. F. Siddiqui, M. Mojahedi, and G. V. Eleftheriades, “Periodically loaded transmission line with effective negative refractive index and negative group velocity,” IEEE Trans. Antennas Propag. 51, 2619–2625 (2003). [CrossRef]
  49. U. C. Hasar, J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, “Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions,” Prog. Electromagn. Res. 132, 425–441 (2012). [CrossRef]
  50. U. C. Hasar, “Reference-plane invariant, broadband, and stable constitutive parameters determination of low-loss materials from transmission-reflection measurements using variable parameters,” J. Electromagn. Waves Appl. 26, 44–53 (2012). [CrossRef]
  51. U. C. Hasar, “A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials,” IEEE Trans. Microw. Theory Tech. 57, 1595–1601 (2009). [CrossRef]
  52. H. J. Pain, The Physics of Vibrations and Waves (Wiley, 2008).
  53. S. Humphrey, “Direct calculation of the optical constants for a thin film using a midpoint envelope,” Appl. Opt. 46, 4660–4666 (2007). [CrossRef]
  54. U. C. Hasar, “Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials,” Meas. Sci. Technol. 19, 055706 (2008). [CrossRef]
  55. S. Xu, L. Yang, L. Huang, and H. Chen, “Experimental measurement method to determine the permittivity of extra thin material using resonant metamaterials,” Prog. Electromagn. Res. 120, 327–337 (2011).
  56. E. Ekmekci and G. Turhan-Sayan, “Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate,” Appl. Phys. A 110, 189–197 (2013). [CrossRef]
  57. Z. Li, K. Aydin, and E. Ozbay, “Retrieval of effective parameters for bianisotropic metamaterials with omega shaped metallic inclusions,” Photon. Nanostruct. Fundam. Appl. 10, 329–336 (2012). [CrossRef]
  58. K. Aydin, Z. Li, S. Bilge, and E. Ozbay, “Experimental and numerical study of omega type bianisotropic metamaterials combined with a negative permittivity medium,” Photon. Nanostruct. Fundam. Appl. 6, 116–121 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited